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Introduction
Carcinomas of Head and Neck (HNC) include oral cavity, larynx 

and pharynx. HNC is the sixth most occurring cancer in all over the 
world [1], and there are about half million of diagnosed cases in every 
year [2]. In Pakistani population, HNC is the second most prevalent 
cancer [3].

Regular in-taking of alcohol and smoking are the main risk factors 
for HNC [4-7].Mainly, cigarettes and alcohol have many carcinogens 
that metabolized to active forms having deleterious effects on the 
body [8]. There are two types of Xenobiotic metabolism enzymes 
i.e. mediated oxidative metabolism (Phase I), and enzyme conjugate
(Phase II). Phase I enzymes are mainly of cytochrome super family
P-450 (CYP) that convert many compounds into highly reactive
metabolites. Many oxidation and some reduction reactions, involving
thousands of substrates are catalyzed by these enzymes [9]. A pro-
carcinogen becomes carcinogenic after the introduction of one or
more hydroxyl groups on substrate. Phase II reactions conjugate with
endogenous substrates by UDP-Glucoronosil Tranferases, Glutathione 
S-Transferases (GSTs), and N-Acetyl Transferases (NATs), that
catalyze the conversion of reactive electrophilic to inactive, easily
removable water soluble conjugates [5]. Gene polymorphisms,
encoding Xenobiotic metabolism enzymes may change the activation
or detoxification associated with function or expression of carcinogenic 
compounds [10-13].

Individuals with these polymorphic genes have greater risk of cancer 
when carcinogens are exposed to them [14]. Androtsopoulos et al., (2009) 
reviewed and concluded that constituents of dietary products suppress 
the progression of cancer by the CYP1A1 through enzyme induction of 
carcinogens and inhibiting the activation of CYP1A1-catalyzed metabolic 
pathway. Recent in vivo investigation confirmed that CYP1A1 gene may 
function as a carcinogen detoxification enzyme [15].

CYP1A1 in human encodes [16] Cytochrome P450, family 1, 
subfamily A, polypeptide 1 protein [17], a member of cytochrome P450 

superfamily of enzymes [18]. The association of CYP1A1 and CYP2E1 
confirmed the increased risk of oral cancer related to cervical cancer 
and esophagal cancer associated respectively [19-22].

Bioinformatics is an emerging scientific field that utilizes 
computational, mathematical and statistical approaches for in silico 
solutions of biological problems. The number of proteins with known 
sequences is increasing with the advent of sequence technologies. A 
large number of protein structure predictions are very expensive 
and time consuming by X-Ray crystallography and NMR methods. 
Bioinformaticians apply different tools for comparative modeling 
and docking of proteins in a fast and easy way. Homology Modeling, 
Threading and Ab Initio in silico approaches were utilized to solve the 
structure prediction problems. The three dimensional (3D) structure 
of the CYP1A1 is not reported in PDB. In this work, a computational 
approach is applied to predict the 3D structure of the CYP1A1 
by homology modeling and to reveal the insights of CYP1A1 3D 
structure. 3D structure is necessary for drug designing because without 
3D structure, it is so hard to elucidate the inhibitor binding sites. 3D 
structure is an effort to create an environment of protein and then 
analyze the drugs. MODELLER 9.10 is reliable and most cited software 
for homology modeling. It predicts the authenticated loops, beta 
sheets, coils, helices, phi and psi angles by utilizing template structure. 
This method generates valid and reliable structures by using suitable 
template having appropriate amino acids identity.
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Materials and Methods
Sequence retrieval and 3D model building

The complete amino acid (512 aa) sequence of CYP1A1 encoding 
protein was retrieved from Uniprot Knowledgebase database with 
accession number A0N0X8 [23] in FASTA format. NCBI Basic Local 
Alignment Search Tool (Psi-BLAST) [24] was used against Protein 
Databank (PDB) for suitable template search with query sequence. 
The top prioritized template with query sequence (PDB ID: 2HI4) was 
selected having 73% identity score and E value 0.00. Query sequence 
and template structure were aligned and 3D structure was built by 
MODELLER 9v10 [25]. The MODELLER assists in 3D structure 
prediction of proteins by satisfaction of spatial restraints [26].

Model Evaluation

The recognition of errors in experimental and theoretical models 
of protein structures is a major problem in structural bioinformatics. 
There is no single method that consistently and accurately predicts 
the errors in 3D structure [27]. Different evaluation tools were used 
for the assessment of protein structure. From models generated by 
MODELLER, the model was selected on the basis of MODELLER 
evaluation score.

The model was further accessed by ProCheck [28]. ProCheck 
generates Ramachandran plot for the assessment of models along with 
distribution of residues in favoured, allowed and outlier regions. 

The quality of 3D model was verified by ERRAT [29], ProSA 
(Protein Structure Analysis), Verify3D and ANOLEA (Atomic Non-
Local Alignment Environment Assessment) tools. ERRAT generated 
a plot indicating the confidence and overall quality of model. ProSA 
(Protein Structure Analysis) [30] calculated an overall quality score of 
the predicted structure. Verify3D checked the compatibility of model 
(3D) with its own amino acid sequence (1D) and assigned a score for 
each residue [31]. Energy calculations were performed by ANOLEA 
(Atomic Non-Local Environment Assessment) server [27] that gave 
Non-local normalized energy Z-score of model. The binding pockets 
were explored by Site Hound [32] and CastP. 

Docking Analysis

Numerous tools and servers were utilized to analyze for inhibitor 
that might potentially inhibit CYP1A1 by interacting with its predicted 
structure such as AutoDock [33], Chimera 1.6 [34], VegaZZ [35], 
Chemdraw [36], mCule [37], Molinspiration [38] and Osiris Property 
Explorer. Docking studies were done by AutoDock tools. The number 
of rotatable bonds, H-bond acceptors and H-bond donors were 
obtained using MCule and Molinspiration. The online tool Osiris 
Property Explorer was employed to estimate their possible tumorigenic, 
reproductive or mutagenic risks and to calculate the drug like properties 
of inhibitor. Lipinski’s rule of five was analyzed by mCule server. The 
drug score percentage calculated by Osiris software. The mCule and 
Osiris programs were employed to estimate the mutagenesis of novel 
molecules and no mutagenic risks were detected.

C6H13FN2O2 inhibitor [39] was found for HNC in literature. The 
aim of docking analysis was to identify the binding pattern and the 
relative binding specificities. The geometry optimization and energy 
minimization of inhibitor was performed by Vega ZZ and ChemDraw 
Ultra. Results were analyzed by using AutoDock tools and Chimera 
1.6. Binding interactions were elucidated using AutoDock. Default 

parameters with generating 100 poses of complexes were utilized. The 
grid box was used to define the screening site. Lowest binding energy 
complex was selected and visualized by Chimera 1.6.

Results and Discussion
MODELLER generated 3D models by using the 2HI4 template 

having 73% similarity with query sequence. DOPE scores of models were 
obtained from MODELLER log file and model having least DOPE score 
and lowest MODELLER objective function was selected (Figure 1).

Structural Assessment

For further evaluation of the predicted 3D structure, model was 
submitted into RAMPAGE tool. Ramachandran plots showed Φ and 
Ψ distributions of non-Glycine, non-Proline residues (Figure 2) and 
gave residues distribution (Table 1). The phi and psi angles originated 
were plotted against each other to differentiate the favorable and un-
favorable regions. These angles were used to evaluate the quality of 
regions.

Model validation by Errat

3D predicted model of CYP1A1 was subjected into the Errat 
protein structure verification server. Errat provided an Overall quality 
factor of model as 82.121%, which is very much satisfactory (Figure 3). 
On the error axis, two lines were drawn to indicate the confidence with 
which it is possible to reject the regions that exceed the error value. It 
expressed as the percentage of the protein for the calculated error value 
falls below the 95% of rejection limit. Good high resolution structure 
generally produce values around 95% higher. For lower resolutions 
(2.5 to 3.0 Å), the average overall quality factor is around 91%. Errat 
produces a plot that gives the value of error function which showed 
confidence limits by comparing with statistical analysis from highly 
refined predicted structures. So, 82% overall value is much reliable and 
satisfactory for further analysis.

Model validation by ProSa

ProSa gave Z-score plot (Figure 4a) of protein structure to 
determine the overall model quality. The Z-score of the predicted 
model was -8.76 which represents a good quality model. The local 

Figure 1: Three Dimensional structure of CYP1A1 protein.
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model quality was judged by plotting energies as functions of amino 
acids in ProSa residue score plot (Figure 4b).

Verify3D showed that 90% of the amino acids exhibited scores 
≥ 0.2 in the 3D/1D profile. Predicted model was further assessed by 
other evaluation tools, namely PROCHECK and ANOLEA which gave 
satisfactory results suggesting reliability of model (Table 2). 

Masood et al. (2011) demonstrated that genetic polymorphisms of 
CYP1A1 gene along with environment factors are the main cause of 

HNC [40]. The most prevalent area of HNC is oral cavity. These results 
further supporting the earlier findings but differ only in increased rate 
of HNC occurrence [41-43].

The top ten binding pockets of CYP1A1 were identified which 
ranked on the basis of energy (Table 3). The volume of the binding 
pockets was also analyzed in x-axis, y-axis and z-axis. The binding 
residues of the binding cavities explored for fruitful binding of novel 
ligands. The binding pockets of CYP1A1 are not reported yet. So, the 
in silico approaches utilized for the prediction of binding pockets in 
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Figure 2: Ramachandran plot (showing separate Φ and Ψ distributions of residues in General, Glycine, Pre-pro and Proline).

Table 1: Ramachandran plot calculations of 3D model of CYP1A1 by RAMPAGE.

Residues Distribution % Residues Expected Residues in Model
% residues in Favoured region ~98.0% 496 (97.3%)
% residues in Allowed region ~2.0% 13 (2.5%)
% residues in Outlier region 1 (0.2%)

Table 2: Evaluation results of Model by PROCHECK, VERIFY3D and ANOLEA.

Template PROCHECK VERIFY3D ANOLEA

2HI4
Core Allowed Generously Disallowed 3D-ID

Score Z-Score

94.9% 4.7% 0.2% 0.2% 90% 3.40

Overall quality factor**: 82.121
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Figure 3: ERRAT result showing an overall quality factor of model (error-axis showing the error values to reject regions that exceed error value).
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this study. The energy range of predicted cavities also elaborates the 
efficacy of pockets. The mutational study of binding residues suggested 
that these residues could be used as clinical prospectus against cancer 
study. The predicted binding residues lead to the drug designing of lead 
compounds against HNC.

AutoDock 4.0.2 tool was employed to explore how the ligand binds 
to the respective protein, best structural information, functionally 
interacting residues and the binding conformation. The ligand retrieved 
for CYP1A1 (Figure 5) from Tahir et al., (2013) [39] is described in 
Table 4. The protein-ligand docked complex post docking analysis 
and amino acids found in binding pocket of protein were identified by 
Chimera 1.6 (Figure 6). In an endeavor to inspect, It was observed that 

Leu-21, Val-22, Phe-23, Gly-42, Pro-43, Gly-45, His-51, Gln-75, Ile-76 
residues exhibit good binding interactions with inhibitor. It was also 
analyzed and observed that the inhibitor bind at the binding residues 
between Leu-21to Ile-76. The inhibitor bind in the binding pocket-5 
(Table 3) having volume 64.00 Å. 

In this study, in silico methodologies such as homology modeling 
and docking analysis were carried out. Three dimension structure of 
CYP1A1 was modeled by employing the crystal structure template. 
The predicted structure of CYP1A1 has a good degree of accuracy. 
The final refined model was assessed by different evaluation programs. 
Ramachandran plot values indicated ideal results of predicted model 
as residues in favoured regions which are 97.3%, while only 1 (0.2%) 

Table 3:  Top ten binding pockets with binding residues, energy and volume.

Rank Energy (Kcal/mol) Energy Range Volume (Å)
Center

Residues
X-axis Y-axis Z-axis

1 -1325.45 (-18.09, -8.97) 102.00 0.868 17.702 17.070
ILE-115, Ser116, Ser-122, Phe-123, Asn-221, Phe-224, Gly-225, 
Leu-254, Asn-255, Phe-258, Leu-312, asp-313, Gly-316, Ala-317, 
Asp-320, Thr-321, Ile-386, Leu-496, Thr-497

2 -1313.77 (-17.14,-8.90) 113.00 6.054 25.393 18.356

Arg-106, Arg-106, Mat-121, Ser-122, Arg-135, Asp-313, Ala-317, 
Thr-321, Phe-381, Val-382, Thr-385, Ile-386, Gln-411, Ile-449, 
Phe-450, Gly-451, Arg-455, Lys-456, Cys-457, Ile-458, Ala-463, 
Leu-496

3 -922.44 (-16.53,-8.90) 83.00 14.743 33.033 24.806
Leu-89, Arg-93, Leu-373, Phe-376, Val-442, Ser-444, Glu-445, Lys-
446, Val-447, Ile-448, Ile-449, Phe-450, Gly-451, Met-452, Lys-456, 
Glu-460, Arg-464

5 -756.33 (-17.34,-8.93) 64.00 27.587 22.959 -2.826
Leu-21, Val-22, Phe-23, Arg-27, Lys-38, Asn-39, Pro-40, Pro-41, 
Gly-42, Pro-43, Trp-44, Gly-45, His-51, Gln-75, Ile-76, Arg-77, 
Phe-399

6 -735.99 (-19.40,-8.90) 61.00 -9.884 17.397 34.957 Lys-165, Glu-166, Val-169, Val-197, Cys199, Ala-200, Gly204, Arg-
205, Tyr-207, His-209

7 -720.08 (-18.90,-8.93) 61.00 3.903 18.004 52.343 Ile-171, Arg-353, Ser-354, Arg-355, Arg-356, Ile-473, Gln-476, Arg-
477, Leu-510, Arg-511, Ser-512

8 -674.77 (-16.19,-8.90) 60.00 15.741 9.268 11.292 Met-52, Leu-53, Leu-55, Gly-56, Lys-57, Pro-59, Glu-226, Gly-229, 
Ser-230, Gly-231, Asn-232, Pro-233, Ser-247, Ile-493, Tyr-494

9 -599.82 (-17.11,-9.00) 52.00 29.742 28.345 16.146 Ser-67, Gln-68, Gln-69, Gly71, Asp-72, Ser-87, Gly-88, Leu-89, 
Asp-90, Gln-413, Asp-417, Gln-418, Lys-419, Leu-420, Lys-446

10 -573.59 (-13.44,-8.91) 56.00 10.125 19.961 -0.815
Trp-24, Ser-80, Thr-81, Pro-82, Arg-106, Pro-107, Asp-108, 
Leu-109, Tyr-110, Pro-125, Asp-235, Phe-236, Pro-238, Arg-241, 
Ser-389, Gly-404, Cys-406
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Figure 4: (a) Black dot in plot showing the -8.76 z-score of predicted model. (b) Residue score plot showing energies of amino acids are less than zero 
that represent good quality model. 
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residue was in the outlier region. Overall model quality was measured 
by ERRAT showing reliable model having 82% overall quality 
factor. Similarly, Verify3D gave 90% score of predicted model. The 
molecular docking analyses were conducted by automated docking 
Tools (AutoDock) that has allowed to conclude the ligand-receptor 
interactions of selected inhibitor. The analyses of the interactions 
between CYP1A1 and inhibitor have pointed out the best complex 
with least binding energy. The results of docking analysis suggest that 
inhibitor must be the one that comes under the designed parameters 
of having a less docking score and for satisfying its drug likeness. By 
analyzing drug score and Lipinski’s rule of five, it is suggested that 

inhibitor (C6H13FN2O2) is proven as a potential inhibitor for HNC 
treatment by targeting CYP1A1. Our docking results revealed the 
involvement of Leu-21, Val-22, Phe-23, Gly-42, Pro-43, Gly-45, His-
51, Gln-75, Ile-76 residues and mutational studies of these residues 
could be highly effective in further studies. Predicted protein model 
described in this work may be further used for finding interactions with 
other proteins involved in HNC or in different cancers.

Conclusion
In conclusion, this analysis suggests that the selected inhibitor is 

efficacious in the treatment of HNC. Though numerous differences 
exist between baseline population, computational analysis and trail 
methodology studies, it seems to be justified to conclude that selected 
inhibitor may be a good option for the treatment of HNC. Further 
studies and synthesis of novel compounds considering these findings 
can expect similar response rates and cure the HNC.
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Figure 5: Two dimensional structures of selected inhibitor.

Figure 6: Binding pocket and interacting residues of analyzed inhibitor.

Table 4: Inhibitor properties and binding residues.

Ligand Properties C6H13FN2O2 
Molecular Weight (g/mol) 164.10 
Hydrogen Bond Acceptor 04

Hydrogen Bond Donor 02
Rotatable Bonds 00

ClogP -2.4
Solubility 0.71

Drug Score 77%
Binding Energy (Kcal/mol) -3.99

Molecular Formula C6H13FN2O2 
Inhibition Constant (mM) 1.19

Interacting residues Leu-21, Val-22, Phe-23, Gly-42, Pro-43, Gly-45, 
His-51, Gln-75, Ile-76, Arg-77 
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