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Abstract

This study aimed to explore the dominant fecal microbiota and fecal short chain fatty acid metabolites in Egyptian
adults. The impact of a three week dietary intervention with fermented sour sobya (SS) providing daily 1.56 ± 0.22
and 1.79 ± 0.14 billion colonies forming units of Lactobacilli and yeasts, respectively on the fecal microbiota and
metabolites in healthy adults were also investigated. The abundances of 12 bacterial taxa were characterized before
and after three-week daily intake of SS by quantitative real time PCR. Fecal short chain fatty acids were analyzed in
parallel with gas chromatography. The intervention with SS led to more than 46-fold average increase in genome
numbers of Lactobacillus rhamnosus, potential probiotic present in SS. Fecal Enterobacteriaceae and its genus
Escherichia, which are often associated with pathogenic traits and inflammation, were reduced significantly following
the three week intake of SS. The intake of SS was also associated with significant increase in fecal short chain fatty
acids including butyrate. These data provide evidence of unique beneficial effects for the use of microbiome-based
therapies such as fermented sour sobya in clinical and molecular nutrition and medicine.

Keywords: Sour sobya, Egyptian adults, Gut microbiota, Short chain
fatty acids, Lactobacillus rhamnosus, Enteric bacteria

Abbreviations CFU: Colony Forming Units; LAB: Lactic Acid
Bacteria; MRS: Man Rogosa Sharpe Medium; SCFA: Short Chain Fatty
Acids; YPD: Yeast Extract Peptone Dextrose Medium

Introduction
The human gut microbiome contains a large number of bacterial

cells and the bacterial cells harboured within the human
gastrointestinal tract (GIT) were estimated to outnumber the host’s
cells by a factor close to 1:1 [1] and in other studies 10:1 [2]. The gut
microbiota is involved in basic human biological processes, including
modulating the metabolic phenotype, regulating epithelial
development, and influencing innate immunity [3-6]. The typical gut
microbiome of an adult is dominated by the phyla Bacteroidetes and
Firmicutes, with lesser numbers representing Proteobacteria,
Actinobacteria, and Archaea [7].

Results from 16S rRNA gene-based microbiota profiling
demonstrate that different long-term diets are associated with distinct
gut microbiomes [8-10]. For example, both quantitative and qualitative
changes of mucosal and fecal gut microbiota were reported in response
to high intakes of dietary fats and refined sugars that are typical of a
Western diet [11,12]. These changes can lead to disruptions of the
community ecology of the microbiome with implication in diseases,
particularly those involving systemic or localized inflammation
[12-14].

With the recognition of adverse effects of diets rich in processed
foods on the human gut microbiome [15,16] incorporation of
probiotic bacteria and functional fermented foods into human
consumption elicits an increasing interest [17-20]. Probiotic
microorganisms provide benefits to the human host by modifying the
composition of gut microbiota; enhancing resistance to potential
pathogens, via competitive adherence to the mucosa and epithelium;
competition for nutrients and the production of anti-microbial
substances; strengthening gut epithelial barrier function; preserving
epithelial barrier, decreasing abundance of pathogenic bacteria, and
promoting a healthy intestinal immune system [21-24] and can reduce
the risk of upper respiratory tract infections [25,26].

Probiotic dosages are measured in Colony Forming Units (CFUs),
which express the live bacterial organisms provided in each dosage and
probiotic foods must contain at least one billion (1 × 109) live colony-
forming units of a recognized probiotic species per serving (e.g., active
probiotic cultures). A wide range of dosages for Lactobacillus sp. and
other probiotics have been studied in clinical trials and most studies
examined dosages in the range of 1 to 20 billion CFU per day. More
than 10 billion CFUs per day in adults were associated with a more
significant study outcome [27,28]. Synergistic multi-strain and multi-
species probiotics were reported to be more effective over mono-strain
probiotics [29-31] more effective at inhibiting pathogens than single-
strain probiotics, as the pathogen is thereby exposed to multiple forms
of antagonism .Wide variation exists in the dosages provided by
different probiotics than with almost any other dietary supplement
used today [32-34].
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The wide variation in the dosage has to do with the different forms
of probiotics available today, individual product viability and intended
product usage [35]. Probiotics are generally sold as capsules or are
incorporated into food. Therapeutic fermented dairy products such as
Danactive, which contains 10 billion CFUs of L. casei DN-114 001 per
serving, and Activia, which contains about 5 to 10 billion CFUs of B.
animalis DN-173 010 per 4-oz (113.4 g) container, are currently
available. Consistent identification and concentration of the probiotic
microorganism(s) must be clearly indicated on the label in order to
avoid misunderstanding and misuse of the probiotic product. Because
some labels are unreliable, precautions should be undertaken to
recommend specific brands known to be of reasonable quality [36].

Another important aspect that might to be observed is related to the
viability of the microorganism(s) at the time of consumption; often the
number of probiotic bacteria found in the products was below the one
declared. Probiotic supplement manufacturers will overdose their
products so they provide a minimum number of viable CFUs through
the end of their shelf-life [37] or by introducing the technology of
microencapsulation to improve the shelf-life of probiotic bacteria and
to ensure a consistent dosage is provided throughout the duration of
the probiotics viability [38]. Popular commercial probiotic cultures
which are available in global markets include Lactobacillus rhamnosus
HN001 (DR20) marketed by Danisco (Madison,WI , USA), L
rhamnosus R0011 marketed by Institute Rosell (Montreal, QC,
Canada), and Saccharomyces cerevisiae (boulardii) marketed by
Biocodex.

The Food and Agricultural Organization of the United Nations
encouraged more extensive studies on traditional fermented foods
because the acid-producing organisms in these products may prevent
“fouling” of the large intestine and thus lead to an increased life span
of the consumer [39]. Food fermentations are ancient processes that
date back to the introduction of agriculture and animal husbandry and
are estimated to make up approximately one-third of the human diet
[40] and play essential roles in enhancing the stability, quality, flavor,
and texture of human food production practices that entailed the
recycling of isolated microbial communities in the presence of
abundant agricultural food sources [41].

Lactic acid bacteria (LAB), Bifidobacteria and bread yeasts are the
dominating environmental microorganisms [42] that enter the GI
tract. During fermentation, the enzymatic activity of the raw material,
colonic extraction of nutrients and the metabolic activity of
microorganisms modify the food constituents, synthesizing
metabolites and proteins, and providing living microorganisms to the
gastrointestinal (GI) tract [43].

Artisanal fermented cereal grains are made from different types of
cereals as maize, sorghum, millet, rice or wheat under the catalytic
action of lactic acid bacteria and yeasts [44-46]. The methodologies are
based on serial inoculation in a process known as back-slopping
andresults in specifically organoleptic and health-beneficial properties
[47]. LAB comprise a significant component of the human gut flora
and have several beneficial roles in the probiotic potential of lactic acid
bacteria and this group typically constitutes around 1% of the fecal
bacterial population [48]. Traditional food fermentations are elegantly
simple in that they generally required very few ingredients and
fermented cereals have been increasingly recognized as functional
foods with beneficial properties, preparation and processing. Although
some fermentations contain only few dominant taxa, strain differences
and population dynamics during process can be remarkably complex
[47].

In some foods, even minor alterations to species diversity or
numbers can result in significantly different food products and
variations in quality and organoleptic properties. Therefore, a
microbial composition with temporal and spatial stability and
resilience results in consistent fermentations and process conditions
those are necessary to produce high quality food. Recent studies have
explored the microbial diversity of numerous fermented food types.

It is increasingly understood that some fermented foods also
promote human health in ways not directly attributable to the starting
food materials. That is, the outcomes of fermentation, and the
contributions of microbes, in particular, can provide additional
properties beyond basic nutrition. Recent human clinical studies on
fermented foods support this possibility and related the intake of
fermented food and improvement in non-communicable chronic
diseases, such as type -2 diabetes mellitus [49,50].

Sour sobya (SS) is fermented cereal grains milk porridge prepared
by inoculation of wheat [45] or rice [51] with non-conventional
diverse lactic acid bacteria (LAB) and mixed yeasts species [45].
Although only a limited number of clinical studies on fermented foods
have been performed, scientific based evidences demonstrated that
intake of SS reduced risk of cardiovascular disease (CVD) [52],
intestinal permeability [53], stimulated the anti-oxidant capacity
among healthy adults [54] and had in vitro anti-microbial activities
against seven virulent enteric pathogenic bacteria [55].

These benefits might extend to immediate physiological responses, a
possibility recently indicated by the finding that fermented milk
consumption reduced muscle soreness induced by acute resistance
exercise [56] and prevented the onset of physical symptoms in students
under academic examination stress [57].

Currently, there is no data available on the gut microbiome of
Egyptian children. The objective of the present study was to quantify
the abundances of 12 common taxa of the human gut microbiome
among Egyptian adults and to report changes in fecal microbiota
following intake of fermented sour sobya.

Materials and Methods

Study design and participants
A randomized controlled trial was conducted on 14 healthy

Egyptian volunteers with mean age of 24.4 ± 0.7 years and BMI
average of 23.7 ± 0.9 kg/m2. The study protocol received approval from
the National Research Center Medical Research Ethics Committee,
Egypt (Registry number 16-422). The protocol was fully explained to
all participants and written informed consent was obtained before
participation in the trial. Exclusion criteria were defined as any
symptoms that were likely related to a digestive tract disease and/or
intake of antibiotics during three months prior to the start of the trial.
Participants were asked to maintain their normal diet, but to abstain
from consumption of probiotic-containing products or fermented
dairy products. After two weeks washout period, the participants were
divided randomly into two equal-sized groups. The first group
(designated “SS group”) consumed daily 170 g SS, while the second
group (designated “control group”) served as a control and did not
receive any supplement.

Sour sobya is a commercial fermented sweet porridge (Elrahmany,
SayedaZeinab, Cairo, Egypt) and was purchased in 500 g packages
twice weekly from the same store and stored in the refrigerator. The
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supplement was delivered daily in 170 g portions providing 4.4 ± 0.62
and 1.79 ± 0.14 billion CFU of lactic acid bacteria and yeast,
respectively. The dietary intervention study continued for 21 days and
the volunteers were asked to collect voided stool samples in sterile
containers at day 0 and day 21, which were saved at -70°C for
subsequent analysis.

Dietary assessment
The participants completed food diaries three times per week

(including two weekdays and one weekend day). Dietary intake was
calculated using a computer aided nutritional analysis program (Nutri
Survey, Seoul, Korea). Daily macronutrient consumption was
calculated using a diet software program based on the type and
quantity of each ingredient consumed, and Egyptian food composition
tables.

Microbiological testing
The enumeration of the viable bacteria in the SS suspensions was

carried out by plating serial dilutions of SS from 1/1000 to 1/107on the
selective deMan, Rogosa and Sharpe Agar (MRS, Biolab, UK)
lactobacilli on MRS agar (Difco, Sparks, MD, USA) supplemented with
3% ethanol and 0.5% cycloheximide to inhibit yeast growth [59]; in an
anaerobic environment using anaerobic gas packs (Oxoid, Unipath Ltd,
Basingstoke, UK), capable of producing 1800 cm3 hydrogen and 350
cm3 carbon dioxide. The plates were incubated at 30°C and examined
after 5 days for the bacterial growth and the counts were expressed as
CFU g-1 of SS. Colonies (Gram positive isolates) from the highly
diluted plate were identified by matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF MS)
protein analysis [60]. Preparation of the bacteria isolate was carried out
according to the ethanol/formic acid extraction protocol [61]. The
MALDI-BioTyper (BrukerDaltonics, Leipzig, Germany) was used for
the analysis. The results were expressed by MALDI-BioTyper matching
scores (ranging from 0.000 to 3.000), which indicated the similarity of
the unknown MALDI-TOF MS profile to available profiles in the
MALDI-BioTyper 3.0 software database.

The yeasts in SS were enumerated on acidified YEPG agar (yeast
extract 10 g; peptone 20 g; glucose 20 g; agar 15 g per liter) which had
been adjusted to pH 3.5 by the addition of sterilised 1N after being
autoclaved [62]. The plates were incubated at 30°C for 72 h and
colonies were enumerated and the yeast isolates were identified with
API 50 CHL test (BioMe`rieux, Marcy-l ’ Etoile, France) following
instructions of the manufacturer.

Fecal DNA extraction
Fecal specimen (150 mg) was promptly removed from the frozen

sample and extraction was completed by the ZR fecal DNA isolation
kit (DNA MiniPrep™ kit (Catalog No. D6010, Zymo Research, Ohio,
USA) under simultaneous multi-directional beating in a FastPrep 24
instrument (MP Biomedicals, Ohio, USA) for 40 s . The extractions
and purification were done following the manufacturer ‘ sprotocol
based on published technique [63].

Genomic DNA quantification was based on the absorbance
measurement at 260 nm wavelength using Nanodrop 1000
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA).
Genomic solution containing 50 μg ml−1 of double-stranded DNA has
an OD 260 of 1.0 and was stored at -70°C. The DNA concentration was
adjusted to 10 ng μl-1on the day of amplification.

The following twelve pure bacterial groups and species were
obtained from the Deutsche Sammlung von Mikroorganismen
(Braunschweig, Germany) or the American Tissue culture collection
(ATCC)and were used for bacterial identification : Bacteroides
thetaiotaomicron DSM 2079, Bifido bacterium ATCC 15707T,
Bifidobacterium longum NCC 2705, Blautia product DSM 2950,
Clostridium butyricumDSM 10702, Clostridium leptum DSM 753,
Enterobacteriaceae DSM 30083T, Escherichia coli K-12 MG1655,
Faecalibacterium prausnitzii DSM 17677, Lactobacillus DSM
20079T17, Lactobacillus rhamnosusATCC 7469, Prevotella
melaninogenica DSM 7089. The bacterial cultures were grown
anaerobically in an atmosphere of 80%, N2-20% CO2 at 37°C.

The purity of the cultures was checked by inspecting the colony
morphology after anaerobic growth on BHI medium and cellular
morphology with gram staining. The cells were suspended in buffer,
centrifuged and the pellets (approximately 109 bacterial cells) were
used for the extraction and purification of DNA using RTP Bacteria
DNA Mini Kit (Invitek, Berlin; Germany). The extracted genomic
DNA was stored at -70°C until used.Just before measurement, dilution
series from 2.0 × 1010-2.0 × 102 copies/μl PCR reaction were done.

The sequences of each primer pair targeting 16S rRNAbacteria
group or species are listed in Table 1 and the universal 16S gene PCR
primer set (63F/1387R) was used to quantify the total bacteria. The
housekeeping gene groEL HSP60 (EuroFins MWG Operon (Ebersberg,
Germany) was used in the case of Bifidobacteria, due to its superior
characteristics based on previous experiences [64].

DNA amplification and detection by quantitative polymerase chain
reaction was performed using power SYBR Green PCR master mix
(Applied Biosystems, USA) in optical-grade 96-well plates in a total
volume of 20 μL and each PCR reaction was run in triplicate. The PCR
master mix contained the following ingredients: Magnesium chloride
(5.5 mM/L) 4.4 μL; buffer solution (1.5 mM/L)2 μL; dNTP (0.25mM)
0.4 μL; the appropriate primers (200 nmol/L) 0.8 μL; fecal genomic
DNA or pure bacteria DNA 2 μL; SybrGreen 0.2 μL; ROX (50 nM)0.04
μL; Tag (1.25 U) 0.1 μL and DNA free water 10.26 μL. Melting curves
for gDNA was generated by the Real Time PCR (ABI 7500 FAST;
LifeTechnologies GmbH, Darmstadt, Germany) according to the
instruction of the manufacturer.

Real time PCR system
PCR initial heat activation 5 min/95°C, 2-step cycling denaturation

10 s/95°C, combined annealing/extension 30 s/60°C and the number of
cycles was 35–40.qPCR standard curves were constructed for each
primer pair using 10-fold serial dilutions of bacterial genomic DNA of
known concentration. The qPCR data were converted to the estimate
of log10 total genome copies from each bacterial taxon present in one
gram fecal wet weight using the appropriate software program.

Analysis of fecal short chain fatty acids (SCFAs): SCFAs were
extracted from fresh feces (300 mg) with six-fold volume of perchloric
acidified water in the presence of 23.6 µl isobutyric acid (12 mM) as an
internal standard. Following vortexing and lyophilization, SCFAs were
extracted with diethylether and silylated. The samples were allowed to
stand for 48 h before injection to complete the derivatization. The gas
chromatograph (HP 5890 series Hewlett-Packard, Waldbronn,
Germany), equipped with a HP-20 M column (25 m × 32 mm; film
thickness 0.3 µm) and a flame ionization detector, was used for SCFA
measurements. Helium was used as the carrier gas at a flow rate of 1
ml min-1. The initial column temperature was 75°C for 1 min; the
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temperature was increased to 100°C at a rate of 20°C min-1 and then
to 150°C at a rate of 5°C min-1 and then maintained for 3 min at this
temperature. The temperature of the injector and the detector was

200°C and the split ratio was 1:10. SCFA concentrations were
expressed as mmol g-1 fresh fecal material.

Target taxon Primera Primer sequences
Amplicon
size

Annealing T
(°C) Reference

Bacteroides spp.

 

Bact-F TGTGACTGCCGGTGCAAGCC
192

 

71

 

Slezak [90]

 Bact-R ACTTTGCGCATAGCGTCAGCA

Bifidobacterium spp.

 

Bif-F CTCCTGGAAACGGGTGG
547

 

55

 

Matsuki [91]

 Bif-R GGTGTTCTTCCCGATATCTACA

Bifidobacterium longum

 

Blon-F CGGCGTYGTGACCGTTGAAGAC
257

 

70

 

Junnick, Blaut [64]

 Blon-R TGYTTCGCCRTCGACGTCCTCA

Blautiaproducta

 

Bla-F AACCTGGCAGCAGGCGCTAAC
149

 

71

 

Slezak [90]

 Bla-R TCATCGCCTGCGGAGATAGCTG

Clostridium butyricumb

 

Cbut-F AGTAGCTGTTGAAAAGGCAGTTGAAGA
99

 

71

 

Slezak [90]

 Cbut-R TCAGCAGCAGAAATAGCAGCAACTA

Clostridium leptum group

 

Clep-F GCACAAGCAGTGGAGT
250

 

50

 

Matsuki [92]

 Clep-R CTTCCTCCGTTTTGTCAA

Enterobacteriaceae

 

Ent-F CATTGACGTTACCCGCAGAAGAAGC
500

 

63

 

Bartosch [93]

 Ent-R CTCTACGAGACTCAAGCTTGC

Escherichia coli

 

Ecol-F GGCTATCATCACTGAAGGTCTG
100

 

67

 

Dumonceaux [94

 Ecol-R TTCTTCAACTGCAGCGGTAAC

Faecalibacterium

prausnitzii

 

Fpra-F CCATGAATTGCCTTCAAAACTGTT

142

 

71

 

Sokol [95]

 Fpra-R GAGCCTCAGCGTCAGTTGGT

Lactobacillus spp.

 

Lact-F CGATGAGTGCTAGGTGTTGGA
186

 

60

 

Fu [96]

 Lact-R CAAGATGTCAAGACCTGGTAAG

Lactobacillus rhamnosus

 

Lrha-F CTTGCATCTTGATTTAATTTTG
863

 

55

 

Alander[97]

 Lrha-R CCGTCAATTCCTTTGAGTTT

Prevotella spp.

 

Pre-F CACRGTAAACGATGGATGCC
527

 

55

 

Matsuki [91]

 Pre-R GGTCGGGTTGCAGACC

Total bacteria

 

Uni331-F TCCTACGGGAGGCAGCAGT
467

 

59

 

Mohammadi [98]

 Uni797-R GGACTACCAGGGTATCTAATCCTGTT

Table 1: 16S rRNA gene-targeting taxon-specific primers used for quantitative PCR.

The lower limit of reliable detection of each product was taken as 0.2
mM. Fecal lactate was assayed enzymatically according to the
instruction of the manufacturer of the kit (Boehringer Mannheim-
Darmstadt).

Statistical analyses
T-tests were used to compare distribution of values between the

groups. General linear modeling was used to test the effect of dietary
supplementation (control, SS) and sampling day (0 and 21); volunteer
identity was regarded as random effect.
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Figure 1: Numerical data were presented in boxplots showing median and interquartile ranges. (A) Abundances of microbes were estimated
from qPCR analysis as number of genome copies per gram of fecal material. (B) Concentrations of short chain fatty acids are shown in μmol
per gram of fecal material. Boxplot whiskers depict minimum and maximum values for each group. P values were calculated using two-tailed
T-test, statistically significant (at α=0.05 level) differences are denoted with a star. Abbreviations used: Bact - total Bacteroides, Bif - total
Bifidobacterium, Blon - B. longum, Bla - Blautia producta, Cbut - Clostridium butyricum, Clep – total C. leptum group, Ent - total
Enterobacteriaceae, Ecol - Escherichia coli, Fpra - Faecalibacterium prausnitzii, Lact - total Lactobacillus, Lrha - L. rhamnosus, Pre - total
Prevotella, Ace - acetic acid, Pro - propionic acid, But - butyric acid, Val - valeric acid, iVal - isovaleric acid, Lac - lactate. Note that the
estimated values for total Bifidobacterium are lower than those for Bifidobacterium longum due to limited genus coverage of the
Bifidobacterium-wide primer set (42% genus coverage based on RDP probe match) and lower efficiency of product formation for that primer
pair in qPCR (long amplicon).

Principal components analysis was used to assess the overall
metabolite and microbiota composition of fecal samples (Figure 1).

Results
Fourteen healthy Egyptian adults were enrolled into a 2-arm diet

intervention trial, where one group consumed daily for three weeks
fermented SS and the other group served as control.

Phylum Taxon Detection Log10 genome copies / g wet feces

   Average ± SD Median

Actinobacteria

 

Bifidobacterium spp. 14/14' 7.2 ± 1.7 7.3

Bifidobacterium longum 01-10-2014' 8.9 ± 0.4 8.8

Bacteroidetes

 

Bacteroides spp. 01-10-2014' 8.1 ± 0.5 7.9

Prevotella spp. 14/14' 9.0 ± 1.1 8.9

Firmicutes

 

 

 

 

 

Clostridium butyricum 14/14' 6.3 ± 0.1 6.3

Clostridium leptum group 11/14' 9.9 ± 0.6 10.2

Blautia producta 14/14' 7.1 ± 0.4 7.2

Faecalibacterium prausnitzii 14/14' 9.4 ± 0.3 9.4

Lactobacillus spp. 14/14' 8.3 ± 0.3 8.3

Lactobacillus rhamnosus 14/14' 6.4 ± 0.3 6.4

Proteobacteria

 

Enterobacteriaceae 13/14' 9.4 ± 0.3 9.4

Escherichia coli 14/14' 8.4 ± 0.6 8.5

Table 2: Gut microbiota composition at baseline in healthy Egyptian adults.
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The two groups of participants were very well matched, being
within a narrow age and BMI range, all from the same geographical
area and all accustomed to food prepared according to a typical
Egyptian cuisine (p>0.05 in all comparisons).

Analysis of the participants ’  dietary habits indicated similar
consumption patterns of grains, milk products, fruits and vegetables in
both groups (data not shown).Quantitative PCR was used to obtain
estimates of microbial abundances in all fecal samples at the start of
the dietary intervention. Among the profiled taxa, Clostridium leptum
group (Clostridium cluster IV, includes Faecalibacterium prausnitzii),
Prevotella, and Enterobacteriaceae taxa were the most abundant
(Figure 1A and Table 2). The initial fecal counts of E. coli (8.4 log10
genome copies per g wet feces) were also quite high.

Microbial composition of SS
The 170 g daily portion of SS provided 4.4 ± 0.62 billion CFU lactic

acid bacteria (mostly Lactobacillus rhamnosus) and 1.79 ± 0.14 billion

CFU of yeast. The proteomic spectra of MALDI-TOF identified 5
strains out of 7 LAB isolates as Lactobacillus rhamnosus with high
score values. The API analysis identified the sobya yeast as Sachharomy
cescerevisia.

Abundances of several groups changed among the participants
consuming SS for three weeks compared to the respective control
group. In the participants consuming SS, L. rhamnosus transited
through the gastrointestinal tract and colonized the intestinal
community resulting in an average 46-fold increase in its abundance;
no increase in average cell numbers for this species was observed for
control group (Table 3).

Bacterial taxon Participant group Log10 genome copies/g wet fecesa GLMb

  Day 0 Day 21 Group Day Diet x Day

Bacteroides spp.

 

CONT 8.5 8.5 - - -

SS 7.7 8.4    

Bifidobacterium spp.

 

CONT 7.8 8.7 - - -

SS 6.6 8    

Bifidobacterium longum

 

CONT 9.1 9.1 - 0.01 -

SS 8.7 9.3    

Blautiaproducta

 

CONT 7.1 7.3 - 0.01 -

SS 7 7.6    

Clostridium butyricum

 

CONT 6.3 6.4 0.01 0.01 -

SS 6.4 6.6    

Clostridium leptum group

 

CONT 9.2 9.7 0.01 - -

SS 10.3 10.5    

Enterobacteriaceae

 

CONT 9.5 8 - 0.01 -

SS 9.2 8.2    

Escherichia coli

 

CONT 8 7.9 0.03 0.01 0.01

SS 8.8 7.4    

Faecalibacterium prausnitzii

 

CONT 9.5 9.7 - 0.04 -

SS 9.3 10    

Lactobacillus spp.

 

CONT 8.5 8.7 - - -

SS 8 10.1    

Lactobacillus rhamnosus

 

CONT 6.6 6.6 - - -

SS 6.2 7.8    

Prevotella spp. CONT 8 8.9 0.01 0.02 0.02
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 SS 10 10.7    

Table 3: Mean initial and final bacterial taxon abundances among the control and SS groups (a: Mean among seven subjects; b: Results of
multivariate general linear modeling (GLM) with group and day used as fixed factors; “-“ – not significant at α=0.05 level).

This finding is in line with reports from Finish intervention study,
which found that participants excreted on average more than 1000-
fold higher numbers of L. rhamnosus GG at the end of a three week
dietary supplementation with 1010 CFU of L. rhamnosus GG
compared to the placebo group [Lahti].

In addition to lactic acid bacteria increase after the intake of SS, the
counts of Bifidobacterium longum, Blautia spp., Clostridium leptum,
Faecalibacterium prausnitzii, and Prevotella spp. also increased
significantly (p<0.05, Figure 1A). Interestingly, fecal Faecalibacterium
prausnitzii could not be detected in two subjects assigned to SS group
at day 0; however, F. prausnitzii was restored after the three-week
intervention with SS. SS intake was also associated with significant
reduction (p<0.05) in the fecal counts of total Enterobacteriaceae and
specifically E. coli compared with respective baseline counts (Figure
1A).

Concentrations of short chain fatty acids
Levels of three major SCFAs, butyrate, propionate, and acetate, all

increased after consumption of SS (p<0.05, see Figure 1B). No

respective changes were observed among the control group.
Expectedly, levels of lactate were also higher after SS administration,
though the overall concentration of lactate in stool was low due to
likely reuse of this fermentation product by secondary and tertiary
degraders [65].

Initial fecal pH values averaged 5.9 and were reduced to 5.3 (p<0.05)
at the end of the three week dietary intervention; the respective fecal
pH values for the control group remained almost unchanged.

Ordination analysis of microbial and metabolite datasets
The microbial abundances and metabolite concentration values

among all samples were subjected to principal components analysis to
assess the similarity of microbial and metabolite profiles among
samples [66].

Figure 2: Changes in fecal microbes and metabolites as a function of supplementation used. Sample similarity was assessed by principal
components analysis (PCA) on log10-transformed microbial genome copies dataset (panel A) and on metabolite concentrations dataset (panel
B). Different groups are denoted by colors as shown in the legend. Group clouds represent areas of three standard errors around the group
centroid (diamond). Percent of total variance captured by each principal component is shown in parentheses. Panel C displays a distribution of
distances in PCA space between sample locations before and after supplementation. Boxplot whiskers represent minimum and maximum
distances for each group. P values were calculated using paired samples two-tailed T-test.

Figure 2A shows the PCA output for microbial dataset, and Figure
2B visualizes metabolite-based PCA. Samples collected from sobya
group after SS supplementation displayed larger shift in their microbial
and metabolite profiles compared to the control group.

To assess this observation statistically, we calculated for each sample
the difference of its PC1-PC2 coordinates (=distance in PCA space) at
day 0 and day 21, and show the distribution of these distances for
sobya and control groups in Figure 2C. This analysis confirmed that

sobya group samples were separated significantly more in the PCA
space than those from the control group.

Discussion
The present study explored the fecal microbiome diversity of healthy

Egyptian adults and tested the impact of bacterial quantification based
on real-time PCR provides a challenging analytical strategy for
monitoring the microbial composition in response to dietary
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interventions. The application of PCR since the early 1990s in the
combination with the extraction of genomic DNA from fecal
specimens has been central to the development of culture independent
approaches in microbial ecology [67].

In the present study, the fluorescence-based Q-RT-PCR was utilized
to record the increase in the fluorescent signal associated with
amplicons formation during each cycle of the PCR amplification and
hence facilitating quantitative determination of the initial template
gene numbers.

Quantification of the target gene during exponential amplification
avoids problems that are associated with so-called ‘end-point’ PCR.
The minimum information required for Q-RT-PCR (MIQE) that
includes a set of guidelines in the form of checklist for evaluating
qPCR experiments [68] were followed and the validity of the protocols
was proven.

The selection of primer pairs was based on previously published
data and was tested in the present study against all reference bacteria
listed in the materials and methods section by using optimized
reaction conditions for each assay and subsequent melt curve analysis.
The assays were positive for the corresponding target species and no
cross-reactions were observed with any of the nontarget micro-
organisms of ca. 1,600 bp available in GenBank release 185.0 [69].

The abundance of fecal Prevotella group was high in all participants,
in line with the fact that gut Prevotella correlates positively with a
Mediterranean diet, specifically with high levels of carbohydrate, fruit,
and vegetable intake [70]. While fecal Bacteroides species were
detected in most participants, their numbers were much lower,
consistent with the fact that Bacteroides are abundant among
populations consuming animal-based diet [71].

The two genera of the Bacteroidetes: Bacteroides and Prevotella
were reported to be antagonistic to each other [72], and our findings
support that conclusion. The present results are also consistent with
the previous report on the differences in gut microbiota of American
and Egyptian adolescents [73] and the high abundances of enteric
bacteria in the fecal samples among Egyptians indicating potential
higher load of pathogenic gut microorganisms .

The high counts of fecal Lactobacillus and its ratio to the total
anaerobic bacteria are typically used as an indicator of healthy gut [74].
Lactobacillus rhamnosus GG (ATCC 53103) is one of the most
thoroughly studied probiotics and its beneficial effects include
prevention of antibiotic-associated diarrhea, treatment and prevention
of rotavirus diarrhea and enhancement of intestinal immunity.

The ability of strain GG to survive passage through the
gastrointestinal tract has been demonstrated in both adults and
children by the use of fecal samples [73]. The intake of Lactobacillus
acidophilus improved the intestinal permeability after daily intake for
75 days by Egyptian children [53].

The growing popularity of fermented cereal products and
considerable health and food safety trends in recent years have
emphasized the importance of knowing which food - type microbes
are involved in the production of SS.

For the enumeration of Lactobaccilli in fermented cereals, lactic
acid bacteria (LAB) was enumerated on de Man, Rogosa and Sharp
(MRS) agar media without [46], or in the presence of 0.1 g/ l [75], 0.2
g/ l [76] or 5 g/L [77] filter-sterilized cycloheximide to inhibit yeast

growth . In the present study, LAB was grown on MRS agar plates with
the addition of 3 % ethanol and 0.5 % cycloheximide [59,77].

The incorporation of cycloheximide in the MRS media increased
the Lactobacilli count by 2.3 fold excess (1.56 ± 0.22 and 4.4 ± 0.62
billion CFU per 170 g portion size in the absence and presence of 0.5
% cycloheximide and 3% ethanol, respectively).

The microbial composition of sobya shows population variations
depending on the origin of grains; wheat in Saudi Arabia [45] and rice
in Egypt [51]. A symbiotic relationship exists between the bacteria and
the yeasts and their combined growth results in the fermented sour
sobya (SS) with distinct flavour characteristics and acidic pH of 3.5.
Consumption of SS promoted higher abundance of Lactobacillus spp.,
Bifidobacterium longum, and Faecalibacterium prausnitzii human gut
microbiota members associated with improved health [78] and
drastically reduced the numbers of total Enterobacteriaceae by 12-fold
and E. coli by 26-fold.

Other beneficial effects of sobya supplementation included
significant increase in fecal butyrate concentration relative to the
respective baseline levels. Butyrate is instrumental in mucosal integrity
[16] and is the principal source of metabolic energy for the
colonocytes. It modulates gut homeostasis [80], promotes removal of
dysfunctional cells [16], promotes genomic stability and potentially
protects against colon cancer [81].

Since lactobacilli present in the supplemented SS are not butyrate
producers, we speculate that LAB stimulates SCFA production through
increased cross-feeding with butyrate producers belonging to the
Clostridium cluster IV [82]. Alternatively, certain butyrate producing
taxa could be favored by the lowering in colonic pH values following
the dietary intervention with SS [83].

Today, there is a trend for changing the probiotics from dairy-based
products to whole grain- based functional foods [84]. L. rhamnosus
isolated from SS are characterized with robust sustainability [85, 86]
and may open exciting perspectives for industry-driven applications in
wide range of fermented food matrices.

The ultimate goal is to use microbiome-based therapies in nutrition
[87]. Yoba 2012 was reported to be the world’s first generic probiotic
strain [88] formulated by culturing L. rhamnosus GG with
Streptococcus thermophilus to optimize synergistic propagation of
both strains in wide range of fermented foods [89].

The unique characteristics of fermented SS used in the present study
with its richness in synergistic effects between positively alter host
metabolism and gene expression and might be useful as an adjunctive
therapy in addition to other non-pharmacological interventions for the
management of gastrointestinal disorders, mild malnutrition and high
oxidative burden in childhood. The promotion of a healthy lifestyle by
non-pharmacological means is a preventive measure strategy aiming at
good health.
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