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Introduction
Seborrheic dermatitis (SD) is a common inflammatory skin 

disorder associated with seborrhea. It is characterized by erythematous 
patches with yellow-gray scales. These appear most often on the face, 
especially the nasolabial folds, scalp, and upper trunk, in sebaceous 
gland-rich areas of the skin. The disorder is present in about 3% of 
the general population, more prevalent in males than in females, and 
frequently observed in patients with acquired immunodeficiency 
syndrome (AIDS) and Parkinson’s disease [1,2]. The disease presents 
in two age groups: newborn infants up to 5 months of age, and young 
adults with increased sebum secretion from the skin.

The human skin is populated by various microorganisms, including 
bacteria and fungi [3,4]. Of these, skin fungi, Malassezia species, play 
an important role in the development of SD. As Malassezia species 
require fatty acids for their growth, they colonize the sebaceous gland-
rich areas of the skin, including the face, scalp, and back, where they 
feed on fatty acids from human sebum. Malassezia species secrete 
lipases that hydrolyze sebum into triglycerides, which are further 
hydrolyzed into fatty acids [5-7]. Fatty acids are utilized as nutrition by 
skin microorganisms, including Malassezia. However, the unsaturated 
fatty acid oleic acid causes inflammation of the skin directly by eliciting 
IL-1α secretion from macrophages or epidermal keratinocytes, and 
is thought to be the causative agent of SD [7]. In fact, the mRNA 
expression of a specific Malassezia lipase gene can be detected from 
lesional sites in patients with SD [8,9]. The clinical condition improves 
on administering antifungal agents, suggesting that Malassezia species 
are one of the causative agents of SD [10,11].

Tajima et al. [12] analyzed the Malassezia microbiota in the skin of 

patients with SD using a DNA-based molecular approach. The genus 
Malassezia currently includes 14 species; of these, M. globosa and M. 
restricta are the major species in the skin of patients with SD and these 
species are more abundant at lesional sites than non-lesional sites.

In the present study, we analyzed comprehensively the skin fungal 
microbiota of lesional and non-lesional sites of SD patients to obtain 
basic information to enable understanding of the development of SD 
and skin fungal microbiota using a pyrosequencing approach.

Materials and Methods
Patients and sample collection

Twenty-four Japanese outpatients with SD were enrolled in this 
study (19 males and 5 females; mean age 47.8 ± 18.8 (range 20-77) 
years). Patients who took antimicrobial agents before involvement 
in this study were excluded. The study protocol was approved by our 
Institutional Review Board and informed consent was obtained from 
each individual.

Skin fungi were collected by applying a 5×7 cm OpSiteTM 
transparent adhesive dressing (Smith and Nephew Medical, Hull, UK) 
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using the method of Sugita et al. [13]. Briefly, dressings were applied 
three times each to both lesional and non-lesional sites on the faces of 
SD patients.

Fungal DNA extraction

The DNA was extracted directly from the dressing using the 
method of Sugita et al. [13]. Briefly, the dressing was placed in a 1.5 
mL Eppendorf tube with 1 mL of lysing solution (100 mM Tris–HCl 
(pH 8.0), 30 mM EDTA (pH 8.0), and 0.5% SDS) and incubated for 
15 minutes at 100°C. The suspension was extracted with phenol–
chloroform–isoamyl alcohol (25:24:1, vol/vol/vol), and subsequently, 
chloroform–isoamyl alcohol (24:1, vol/vol). The DNA was precipitated 
with 2.5 volumes of ethanol, in the presence of 3 M sodium acetate 
and Ethachinmate (Nippon Gene, Toyama, Japan), according to the 
manufacturer’s instructions. 

Pyrosequencing 

The universal primers NL1 and NL4 containing the A and B sequencing 
adaptors were used for PCR amplification of the D1/D2 variable 
regions of the 26S rRNA gene. The primers used were B-NL1 
(5 ’ -cc ta tcccc tg tg tgcc t tggcagtc tcaGCATATCAATAAGCG 
GAGGAAAAG-3’; adaptor B in lowercase) and 
A-NL4 (5’-ccatctcatccctgcgtgtctccgactcagatcagacacg 
NNNNNGGTCCGTGTTTCAAGACGG-3’; adaptor A in 
lowercase letter, N represents a bar code unique to each 
sample). The cycling conditions were 94°C for 1 min, followed 
by 30 cycles at 94°C for 30 s, 56°C for 30 s, and 72°C for 30 s, with 
a final extension at 72°C for 10 min. A negative control containing no 
template was also used. Following purification of each PCR amplicon, 
equimolar amounts of each PCR reaction were mixed in a single tube. 

Then, the purified amplicon mixtures were sequenced in a 454 GS FLX 
pyrosequencing platform (Roche Diagnostics Japan, Tokyo, Japan), 
according to the manufacturer’s instructions.

Sequence processing and data analysis

The primer and barcode sequences were removed from the data 
and possible chimeras were also excluded from the analysis. Sequences 
≥400 bp and <1,000 bp in length were subjected to analysis. The D1/D2 
LSU sequences were classified to the genus level using the RDP classifier 
(http://rdp.cme.msu.edu/). The D1/D2 LSU sequence of the type 
strains of yeast-like fungi was extracted from GenBank. The sequences 
were classified to the species level using an in-house BLAST search. 
The R package vegan [http:/CRAN.R-project.org/package=vegan] was 
used to construct the Shannon diversity index boxplot. Significance 
was tested using a t-test with a one-tailed distribution and two-sample 
variance. A three-dimensional principal coordinate analysis (PCoA) 
plot was normalized using weighed values (http://www.quiime.org).

Results
Fungal community composition

This study analyzed 480,186 high-quality sequences ≥400 bp and 
<1,000 bp in length, ranging from 6,058 to 13,773 reads per sample. 
The numbers of reads for lesional and non-lesional sites did not differ 
significantly (lesional sites 9,744 ± 1,864, non-lesional sites 10,263 ± 
2,044). The samples were grouped into 30 genera in two phyla: ten 
yeast-like Ascomycota and 20 filamentous Basidiomycota (Table 1). 
Malassezia was the most abundant fungus genus at both sites, and 
predominated at non-lesional sites (83.3 ± 26.2%) compared with 
lesional sites (57.3 ± 9.6%) (Supplement Figure 1), while the proportion 

Phylogenetic 
group

Taxa Lesional site Non-lesional site Phylogenetic 
group

Taxa Lesional site Non-lesional site
Mean (%) SD Mean (%) SD Mean (%) SD Mean (%) SD

Filamentous 
fungi

Alternaria 0.41 1.71 0.04 0.15 Non-Malassezia Candida albicans 0.39 1.85 0.00 0.00 

 Aphanoascus 0.01 0.04 0.00 0.00 yeast-like fungi Candida azyma 0.01 0.02 0.00 0.02 
 Aspergillus 1.27 3.41 0.06 0.16  Candida etchellsii 0.00 0.01 0.00 0.00 
 Aureobasidium 0.07 0.20 0.01 0.02  Candida sake 0.01 0.03 0.00 0.02 
 Botrytis  0.00 0.00 0.00 0.02  Candida parapsilosis 11.04 9.38 1.02 1.59 
 Cladosporium 3.07 5.42 1.12 1.77  Candida guilliermondii 5.82 7.47 1.12 2.31 
 Cucurbita 0.00 0.00 0.00 0.01  Cryptococcus oeirensis 0.04 0.20 0.00 0.00 
 Cyphellophora 0.15 0.72 0.00 0.00  Cryptococcus saitoi 1.36 6.66 0.18 0.53 
 Eutypella 0.10 0.47 0.00 0.02  Cryptococcus albidus 2.43 5.12 0.64 0.87 
 Hexagonia 0.00 0.00 0.00 0.00  Cryptococcus magnus 1.65 2.51 0.21 0.43 
 Meira 0.00 0.00 0.04 0.11  Erythrobasidium hasegawianum 0.00 0.02 0.00 0.00 
 Neosetophoma 0.01 0.03 0.00 0.00  Filobasidium uniguttulatum 0.51 2.49 0.01 0.04 
 Paraconiothyrium 0.00 0.00 0.01 0.02  Saccharomyces bayanus 0.00 0.00 0.07 0.25 
 Penicillium 0.00 0.00 0.01 0.02  Tilletiopsis minor 0.05 0.21 0.05 0.21 
 Pestalotiopsis 0.26 1.27 0.00 0.01  Trichosporon asahii 0.05 0.25 0.30 1.40 
 Phoma 0.35 1.70 0.00 0.00  Wickerhamomyces anomalus 0.53 2.56 0.00 0.02 
 Plectosphaerella 0.23 1.11 0.00 0.00  Rhodotorula minuta 1.47 3.09 0.80 2.08 
 Sarcinomyces 0.00 0.02 0.00 0.00  Rhodotorula mucilaginosa  11.30 9.66 2.92 3.42 
 Thanatephorus 0.00 0.01 0.00 0.00       
 Toxicocladosporium 0.07 0.30 0.08 0.20       
Genus 
Malassezia

Malassezia restricta 49.60 9.10 52.88 12.52       

 Malassezia globosa 4.99 3.94 31.02 15.42       
 Malassezia sympodialis 2.63 6.61 4.66 6.28       
 Malassezia furfur 0.12 0.29 0.13 0.27       
 Malassezia slooffiae  0.00 0.01 2.62 7.41       

Table 1: The percentage of fungi detected from scale samples from patients with seborrheic dermatitis.

http://www.quiime.org
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of non-Malassezia yeast-like fungi was higher at lesional sites (36.7 
± 10.7%) than non-lesional sites (7.1 ± 5.6%). Filamentous fungi 
accounted for 6.0 ± 6.4% and 1.3 ± 1.8% at lesional and non-lesional 
sites, respectively. Nine taxa accounted for approximately 3% of the 
sequences at both lesional and non-lesional sites: Candida parapsilosis 
and C. guilliermondii, Cryptococcus albidus, Rhodotorula mucilaginosa, 
Malassezia restricta, M. globosa, M. sympodialis, and M. slooffiae, and 
Cladosporium spp. (Figure 1) and accounted for over approximately 
90% of all of the fungal species. The colonization levels of M. furfur, 
M. sympodialis, and M. slooffiae did not differ significantly between 
lesional and non-lesional sites, whereas colonization by both M. globosa 
and M. restricta differed significantly. M. restricta predominated at 
lesional sites (87.1 ± 11.0%) versus non-lesional sites (58.1 ± 13.9%), 
while M. globosa predominated at non-lesional sites (33.6 ± 15.6%) 
versus lesional sites (8.4 ± 6.0%) (Supplement Figure 2).

The Shannon diversity index was calculated to determine the 

diversity of the samples. Lesional samples showed significantly greater 
diversity than non-lesional samples (p<0.01) (Figure 2). PCA was 
used to evaluate sample diversity and analyze the relationships among 
samples, and revealed clear separation between lesional and non-
lesional sites (Figure 3). 

Discussion
This study is the first comprehensive analysis of the skin fungal 

microbiome of SD patients using a pyrosequencing method.

Studies of the relationship between skin microorganisms and SD 
have focused on Malassezia species, since they secrete lipase to hydrolyze 
sebum into fatty acids. A molecular-based culture-independent method 
should be used to analyze the cutaneous Malassezia microbiota in 
healthy subjects or patients as no culture medium that allows efficient 
recovery of Malassezia from scale samples is available. Tajima et al. [12] 
first investigated the skin Malassezia microbiome of SD patients using 
a culture-independent method. The level of Malassezia colonization at 
lesional sites was approximately threefold that at non-lesional sites. In 
addition, M. restricta predominated over M. globosa. Malassezia is part 
of the normal flora in healthy individuals, but is also associated not 
only with SD but also with pityriasis versicolor and atopic dermatitis 
[14,15]. Both M. restricta and M. globosa are major components of 
various skin diseases, although the ratio of the two is disease-specific 
[16,17]. In this study, the pyrosequencing assay revealed that M. 
restricta predominated over M. globosa at lesional sites (Supplement 
Figure 2). While the ratio of M. restricta to the total Malassezia 
colonization level at non-lesional sites was significantly higher than 
that at lesional sites, that of M. restricta was almost the same at both 
lesional (49.6%) and non-lesional (52.9%) sites in terms of total fungal 
colonization level. This was due to the fact that the colonization level of 
non-Malassezia yeast species was higher at lesional sites than at non-
lesional sites. Of the 30 taxa identified in this study, 9 accounted for 
more than 90% of the total colonization. These microorganisms are 
normal fungal flora in healthy subjects, although Candida parapsilosis, 
C. guilliermondii, Cryptococcus albidus, and Rhodotorula mucilaginosa 
rarely cause opportunistic fungal infections in immunocompromised 
hosts [3,18-20].

The greater quantity of sebum at lesional sites than non-lesional 
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Figure 1: Distribution of the nine major taxa.
The distributions of 9 of the 30 taxa are shown.
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Figure 2: Shannon diversity index.
Lesional sites were significantly (p<0.05) more diverse than non-lesional 
sites.

Figure 3: The fungal communities of skin samples obtained from 
lesional and non-lesional sites.
The fungal communities were generated by principal coordinates analysis 
(PCoA).
Red: lesional site; blue: non-lesional site.



Citation: Tanaka A, Cho O, Saito M, Tsuboi R, Kurakado S, et al. (2014) Molecular Characterization of the Skin Fungal Microbiota in Patients with 
Seborrheic Dermatitis. J Clin Exp Dermatol Res 5: 239. doi:10.4172/2155-9554.1000239

Pge 4 of 4

Volume 5 • Issue 6 • 1000239
J Clin Exp Dermatol Res
ISSN: 2155-9554 JCEDR, an open access journal 

sites is thought to explain why the fungal microbiota was more diverse 
or greater fungal colonization was present at lesional sites. Since 
Malassezia species require fatty acids for their growth, they have more 
lipase genes than other skin fungi, with M. globosa and M. restricta 
possessing 15 and 10 lipase genes (unpublished data), respectively. 
Candida species also secrete lipases, so lipases secreted by other fungi 
might act synergistically in the development of seborrheic dermatitis 
[9,21].

Bacteria and other fungi might also be involved in the development 
of seborrheic dermatitis. The fungal microbiomes of the scalps 
of patients with and without dandruff are similar, whereas the 
bacterial microbiomes are different [22]. Staphylococcus epidermidis 
predominated on the dandruff scalps (60%), while Propionibacterium 
acnes predominated on normal scalps (74%) in French subjects. A 
discrepancy in the fungal microbiome was observed between that French 
study and a Korean report. The latter study reported that Filobasidium 
species were most common in dandruff patients, while Acremonium 
species were most common in healthy subjects. Surprisingly, no 
Malassezia species were detected from the scalp samples; this may have 
been due to differences in the techniques used [23].

The genotype of Malassezia species might also be involved in the 
development of seborrheic dermatitis. As the intergenic spacer (IGS) 
region of the Malassezia rRNA gene shows remarkable intra-species 
diversity, population structure can be elucidated by genotypic analyses. 
Tajima et al. [12] and Hiruma et al. [24] found patient-specific IGS 
genotypes of M. globosa and M. restricta in patients with seborrheic 
dermatitis and dandruff.

In conclusion, this study found that the fungal communities were 
more diverse at lesional sites than non-lesional sites. Our findings 
provide useful information for understanding the interactions between 
skin microorganisms and seborrheic dermatitis.
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