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Clinical, Epidemiological Evidence Supports an 
Indirect, yet Important, Role for Dyslipidemia in DR

The role of dyslipidemia/dyslipoproteinemia in diabetic retinopathy 
(DR) has been a matter of debate, but the weak associations between 
plasma lipid levels and DR status have dampened interest. Many earlier 
studies explored the relationship between circulating levels of lipids 
and lipoproteins and the severity of DR, either cross-sectionally or 
longitudinally [1-17]. In general, these revealed correlations between 
retinopathy and standard measures of plasma cholesterol, including 

Abstract
Clinical epidemiological studies have revealed relatively weak, yet statistically significant, associations between 

dyslipidemia/dyslipoproteinemia and diabetic retinopathy (DR). Recent large interventional studies, however, 
demonstrated an unexpectedly robust efficacy of fenofibrate on DR, possibly independent of plasma lipids, towards 
the development of DR. To unify the apparent discrepancies, we hypothesize that plasma lipoproteins play an indirect 
but important role in DR, contingent on the integrity of the blood-retina-barrier (BRB). In retinas with an intact BRB, 
plasma lipoproteins may be largely irrelevant; however, important effects become operative after the BRB is impaired 
in diabetes, leading to lipoprotein extravasation and subsequent modification, hence toxicity to the neighbouring retinal 
cells. In this hypothesis, BRB leakage is the key, plasma lipoprotein concentrations mainly modulate its consequences, 
and fenofibrate has intra-retinal actions. This review summarizes our current knowledge of the direct effects and 
mechanisms of modified lipoproteins on retinal cells and their potential contribution to the pathogenesis of DR.

total and LDL cholesterol, and LDL-to-HDL cholesterol ratio. This 
work has been previously reviewed in detail [18-22], and some recent 
important studies are summarized below.

The Pittsburgh Epidemiology of Diabetes Complications study 
[23], a prospective study with 657 type 1 diabetic patients, showed 
that concentrations of serum triglycerides, and to a lesser extent 
LDL cholesterol, were associated with retinopathy. Higher levels of 
LDL cholesterol and triglycerides were associated with progression 
to proliferative diabetic retinopathy (PDR). In the Early Treatment 
Diabetic Retinopathy Study (ETDRS), serum lipid levels were measured 
in 2709 patients [24]: those with elevated total or LDL cholesterol 
levels at baseline were twice as likely to have retinal hard exudates as 
those with normal levels. The Hoorn study [25], a population-based 
cross-sectional study with 2484 diabetic and non-diabetic individuals, 
found that the prevalence of DR was positively associated with serum 
cholesterol and triglyceride levels, and that retinal hard exudates were 
associated with elevated total and LDL cholesterol. In the Atherosclerosis 
Risk In Communities study [26], the presence of retinal hard exudates 
was correlated with LDL cholesterol and lipoprotein (a). With the 
aid of improved lipoprotein fractionation technology, we evaluated 
the relationship of plasma lipoproteins with DR in more detail in a 
Diabetes Control and Complications Trial (DCCT) sub-cohort of 988 
type 1 diabetic patients (440 women and 548 men) [27]. Lipoproteins 
were measured by conventional lipid profile and nuclear magnetic 
resonance lipoprotein subclass profile (NMR-LSP), and in addition, 
apolipoprotein A1 (apoA1), apoB, lipoprotein (a), and susceptibility of 
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(DME) by 31% and for PDR by 30%. Interestingly, however, its effect 
was not clearly attributable to the systemic lipid-lowering effects[39], 
suggesting that the mechanisms could be unrelated to the drug’s effects 
on plasma lipids, and/or could be related to tissue lipid processing that 
is not readily reflected in systemic circulation: i.e. fenofibrate may act 
through intra-retinal pleiotropic effects. In this regard, fenofibrate has 
been reported to decrease plasma ox-LDL [40], modulate the lectin-
like ox-LDL receptor 1 (LOX-1, scavenger receptor for ox-LDL) [41], 
and attenuate cellular effects of ox-LDL [42]. We have shown that, in 
diabetic animal models, intravitreal fenofibrate attenuated angiogenic 
and inflammatory responses via the PPARα receptor [43]. In addition, 
mechanisms independent of PPARα receptor have been reported 
for fenofibrate [44,45], and may contribute to the attenuation of 
lipotoxicity in retinal pericytes [46]. The findings with fenofibrate were 
not entirely without precedent: many years ago, another fibrate drug, 
clofibrate [47], and more recently etofibrate [48], were also shown to 
have beneficial effects on DR. Of interest, ‘statins’ which are generally 
more effective than fibrates in preventing cardiovascular events, seem 
to be less beneficial than fibrates in DR: they have, however, been 
shown to reduce retinal hard exudates [49].

A Unifying Hypothesis for Lipoproteins in DR
To provide a working model that will connect the apparently 

disparate observations (i.e. relatively weak association data from 
epidemiological studies, robust efficacy of fenofibrate in clinical 
intervention studies, and extensive laboratory data showing deleterious 
effects of modified, but not native, lipoproteins on retinal cells 
(discussed below)), our evolved thinking is that plasma lipoproteins 
play a ‘hidden’, indirect role on DR, which is dependent on the 
breakdown of the blood-retina-barrier (BRB) (Figure 1). In normal 
retina with an intact BRB, plasma lipoproteins are largely irrelevant; 

LDL to oxidation were determined. Conventional profiles showed that 
the severity of retinopathy was positively associated with triglycerides 
and negatively with HDL cholesterol. NMR-LSP measures identified 
retinopathy as being associated with small and medium VLDL and 
negatively with VLDL size. In male subjects only, retinopathy was 
positively associated with small LDL, LDL particle concentration, apoB 
concentration, and small HDL, and negatively associated with large 
LDL, LDL size, large HDL, and HDL size. The findings were consistent 
with a role for dyslipoproteinemia in the pathogenesis of DR. Most 
recently, in a cross-sectional study of 224 type 1 and type 2 diabetic 
patients, apoA1 (inverse association), apoB and apoB-to-apoA1 ratio 
(positive associations) were significantly and independently associated 
with DR and its severity [28]. Serum apolipoprotein levels were believed 
to be stronger biomarkers for DR than the traditional lipid measures in 
that study [28].

Overall, a prominent conclusion of most of the epidemiological 
studies is the positive association between plasma LDL (i.e. levels 
of apoB and cholesterol, or particle size) and DR. However, this 
association, although of statistical significance, is only moderate 
in magnitude, and not of sufficient strength to be useful in defining 
a patient’s individual risk for DR. A further consideration is that, 
without diabetes, dyslipidemia does not appear to cause retinal disease, 
and native LDL even at higher concentrations does not pose significant 
toxicity to cultured retinal cells. 

Besides quantitative lipid measures, qualitative changes of 
lipoproteins such as formation of oxidized LDL (ox-LDL; for a detailed 
review refer to [29]), a well-established risk factor for atherosclerosis 
[30-32], have also been associated with retinopathy. A small but 
significant amount of ox-LDL (ranging from 0.001% in healthy people 
to 5% of total LDL in disease states [33]) was detectable in plasma, and 
was elevated significantly in diabetes [29]. In the Diabetes Control 
and Complications Trial/Epidemiology of Diabetes Interventions 
and Complications (DCCT/EDIC) cohort, we showed that increased 
circulating levels of AGE-LDL-and ox-LDL-immune complexes were 
associated with higher risk of severe non-proliferative retinopathy 
(NPDR) and PDR in type 1 diabetes over many years [34]. In this 
cohort, ox-LDL-immune complexes were also associated with the 
progression of carotid intima-media thickness [35] and coronary 
calcification [36]. In type 2 diabetes, it has been reported that patients 
affected by retinopathy had higher levels of IgG autoantibodies against 
malondialdehyde-modified apoB-100 in their circulation [37], and the 
authors also found that higher levels of IgG specific for the native apoB-
100 fragments p45 and p210 were associated with DR, but appeared 
to be protective of coronary disease progression [37]. The reason 
for such an apparent difference between micro- and macrovascular 
complications is unclear and needs to be further elucidated. Overall, 
the data support a role for modified lipoproteins in the pathogenesis 
of DR.

Interest in the role of lipids and lipoproteins has been amplified 
recently by the results of two large prospective studies of type 2 diabetes 
patients, Action to Control Cardiovascular Risk in Diabetes (ACCORD) 
[38] and the Fenofibrate Intervention and Event Lowering in Diabetes 
(FIELD) Study [39], which demonstrated unexpected yet robust 
benefits of fenofibrate, a drug that has been used to reduce elevated 
plasma triglycerides, on DR. In the ACCORD study, after 4 years, 
fenofibrate reduced the rate of DR progression (6.5% vs. 10.2% with 
placebo) by at least three steps on the ETDRS Severity Scale in patients 
who were also receiving simvastatin. In the FIELD study, fenofibrate 
reduced the frequency of laser treatment for diabetic macular edema 
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Figure 1: A working hypothesis of modified lipoproteins in the pathogenesis 
of DR. The role of circulating lipoproteins in DR depends on the integrity of 
BRB. Normally, plasma LDL does not cause retinal damage, but plasma ox-
LDL (mostly mildly modified) may contribute to the initial BRB impairment, 
together with many other metabolic factors that are commonly seen in diabetes. 
Once the BRB becomes leaky, even in a short period, LDL can extravasate, 
aggregate, and become progressively modified by oxidation and glycation 
in the extracellular milieu, resulting in generalized damages to all retinal cell 
types in proximity. Extravasation of lipoproteins is expected to gradually turn 
intermittent, transient BRB impairment into a prolonged, chronic pathological 
state. In this model, fenofibrate may attenuate retinopathy by modulating intra-
retinal lipid processing and inflammation, with the efficacy unrelated to its 
systemic lipid-lowering effect. The retinal pathology caused by extravascular 
modified lipoproteins is largely isolated from the circulating lipids, consistent 
with the generally weak association between plasma lipids and DR in 
epidemiological studies.
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however, their effects become operative after the BRB becomes deficient 
(as in diabetes), allowing extravasation of lipoproteins which then 
become modified (i.e. oxidized and/or glycated) in tissue, rendering 
them toxic towards nearby retinal cells. In this hypothesis, BRB leakage 
is the key, and plasma lipoprotein concentrations simply modulate 
its consequences. One limitation of the model is that the action of 
lipoproteins occurs only as a secondary effect of BRB leakage, not as the 
primary initiator. BRB impairment may be caused by many common, 
intermittent metabolic stresses that are present in diabetes, such as high 
and fluctuating glucose, free fatty acids, oxidative stress and osmotic 
stress [50-54], all of which may be acutely exacerbated during episodes 
of ketoacidosis. Extravasation of lipoproteins, we suggest, can gradually 
turn a transitory BRB impairment into prolonged, chronic pathology. 
Also, because of their cytotoxic effects on retinal capillary cells, higher 
levels of ox-LDL in circulation may pose a direct noxious effect on the 
BRB [55-57], contributing to the initiation of damage. Overall, the role 
of ox-LDL in DR is essentially analogous to that in atherosclerosis, in 
which elevated plasma levels of LDL and modified LDL are associated 
with cardiovascular disease, where the modification of LDL and its 
harmful effects occur primarily in the arterial intima, not in plasma. 
In the retina, certain unique features are operative: retinal lipoprotein 
exudates appear in the perivascular extracellular space adjacent to the 
neural retina, due to the small size of retinal capillaries [49], and may 
thus produce generalized retinal neurovascular injuries [58]. Also, 
because LDL is normally excluded completely from the retina, the ‘fold 
increase’ once BRB leakage occurs is much greater in the retina than in 
the arterial intima.

Consistent with this model for DR, Benarous et al. [59] recently 
proposed that serum lipids were involved in the late-stage, severe form 
of DME, through lipoprotein exudation following BRB breakdown. In 
a prospective cohort of 500 type 1 and type 2 diabetic patients, they 
reported that serum lipids were independently associated with the 
clinically significant macular edema only, but not with DR, or with mild 
or moderate DME. Indeed, since DME occurs after BRB breakdown, 
dyslipidemia may be more of a risk factor for DME than for DR [60]. 
We suggest that LDL extravasation occurs not only in late-stage DME, 
but also in DR, even at very early stage of the disease. Supporting this, 
in human diabetic retina, we showed that extravascular apoB and ox-
LDL were detectable prior to clinical retinopathy (discussed below), 
suggesting that lipoproteins mediate early pathogenesis of the disease.

Presence of Modified Lipoproteins in Diabetic Retina of 
Humans and Animals 

To provide evidence that ox-LDL is indeed present in the 
extracellular space in retinas of DR patients, we recently conducted 
immunohistochemistry of apoB-100, ox-LDL (antibody against 
copper-oxidized LDL) and macrophages on the post-mortem retinas 
from both non-diabetic and type 2 diabetic individuals with varying 
degrees of DR [61]. Lipoprotein extravasation was observed in all 
diabetic patients, with the extent correlating with the severity of 
retinopathy (i.e. diabetic without clinical DR < non-PDR < PDR), but 
was entirely absent in non-diabetic controls. The finding of ox-LDL 
in diabetic retinal tissue prior to the onset of clinical DR is consistent 
with its role in promotion of early DR. Ox-LDL first appeared in the 
inner retina (i.e. ganglion cell layer) where most blood flow is from 
the central retinal artery, and permeated later to the outer retina that 
receives the choroidal circulation. In addition, macrophage infiltration 
was prominent in retinal sections from patients with PDR. These 
changes were also accompanied with Terminal-dUTP-Nick-End-
Labeling (TUNEL) positive cells in retinas from the diabetic patients, 

but absent in those from non-diabetic subjects, suggesting cytotoxicity 
by modified LDL in promoting DR. The data were in line with an earlier 
case report showing the presence of extravascular apoB, cholesteryl 
ester and macrophages in retinas obtained from two patients with 
diabetic maculopathy [49].

Intra-retinal modified LDL has also been observed in a diabetic 
animal model. Using Akita mice, a well-established model for DR, 
we detected marked increase of both oxidized and glycated LDL in 
retina at 13 weeks of age, as compared with wild-type controls; the 
immunostaining intensity was attenuated following anti-oxidant 
treatment [62]. It is notable that the timing of our detection of 
extravasated modified LDL was probably at the early stage of vascular 
permeability changes in this mouse model, consistent with our findings 
in humans. Barber et al., also using Akita mice, found increased retinal 
vascular permeability after 12 weeks of hyperglycemia (~16 weeks 
of age), but changes of morphology (reduction in the thickness of 
inner plexiform and nuclear layers, and reduction in the number of 
cell bodies in the ganglion cell layer) occurred later, after 22 weeks of 
hyperglycemia, and acellular capillaries and altered morphology of 
astrocytes and microglia occurred only after 36 weeks of hyperglycemia 
[63]. Han et al. reported that the early signs of vascular damage (pericyte 
ghosts, vascular leakage, and microaneurysm formation) appeared at a 
later stage, approximately 4 months after hyperglycemia, followed by 
neovascularization 7 months after hyperglycemia [64].

Effects and Mechanisms of Action of Modified LDL on 
Retinal Cells
Retinal capillary cells

We have accumulated considerable evidence of injurious effects 
of modified LDL towards a variety of retinal cell types in vitro. Since 
capillary damage, and especially pericyte loss, represents one of the 
earliest pathological features of DR [65,66], extensive efforts have been 
made to define the effects of modified lipoproteins on retinal vascular 
cells, although it is recognized that even early DR could involve a 
more generalized neurovascular insult [58]. LDL was obtained from 
healthy donors and modified ex vivo to simulate the various degrees 
of glycation and/or oxidation that occur in diabetes [67,68]. We first 
tested mildly modified forms of human LDL on bovine retinal capillary 
endothelial cells and pericytes [67], with the intent of determining 
whether mild glycation and/or oxidation of LDL occurring in the 
circulation [29] might contribute to the initiation of retinal capillary 
injury. We found reduced survival of both cell types upon exposure to 
low levels of modified LDL, and that toxicity increased in the following 
order: normal < glycated ≤ minimally oxidized < glycoxidized LDL 
[67]. The non-modified, native LDL was ineffective in causing cellular 
damage, suggesting that higher levels of plasma LDL per se do not cause 
injury to retinal vasculature unless modified under diabetic conditions.

Realizing that extravasated, sequestered lipoproteins experience 
more extensive modification [29], by both oxidation and glycation, 
than occurs in plasma, we have employed LDL preparations with 
higher degrees of modification in recent studies. The “highly oxidized, 
glycated” LDL (HOG-LDL) was prepared by copper oxidization, which 
generates epitopes on LDL similar to those found in humans [29,61]. 
The modified LDL was applied to cells typically at concentrations 
ranging up to approximately 30% of plasma LDL level, which we 
considered physiologically conservative since the tissue levels of 
ox-LDL are actually considerably higher than in plasma. Thus in 
atherosclerosis, ox-LDL concentration may be as much as 70-fold 
higher than in plasma [31]; and since plasma has ample antioxidant 
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capacity, it is possible that most circulating ox-LDL may originate 
via ‘reflux’ from plaques [69]. The measures of intra-mural ox-LDL 
concentrations typically represent average values, and may therefore 
be misleading: for a substance that is non-uniformly distributed, local 
concentrations at points of retinal vascular leakage or in arterial plaque 
could be much higher. Such localized LDL leakage and aggregation are 
reflected by the patchy distribution of apoB and ox-LDL staining in 
human diabetic retina [61].

When exposed to HOG-LDL, cultured human retinal pericytes 
experienced significant toxicity, via caspase-dependent apoptosis, in a 
dose- and time-related fashion [61,62,70-73]. HOG-LDL also appeared 
to induce autophagy in pericytes, which may represent an alternative 
cell fate under oxidative stress [72,74]. Several mechanisms including 
oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and 
apoptosis have been explored in detail. Oxidative stress has long been 
considered an initiating factor in diabetic complications and DR [75]. 
In pericytes, HOG-LDL increased intracellular reactive oxygen species, 
peroxynitrite (ONOO-), inducible nitric oxide synthase, nitric oxide, 
as well as 3-nitrotyrosine levels, but depleted the level of glutathione 
peroxidase 1; these findings are indicative of both oxidative and 
nitrosative stresses [72,76]. Modification of LDL after α-tocopherol 
enrichment [77], or in the presence of aminoguanidine [73], abolished 
the adverse effects of glycated, oxidized, and glycoxidized LDL on bovine 
retinal endothelial cell and pericyte survival and other endpoints. In 
the retina from diabetic rats, we detected significantly elevated levels 
of 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine compared with 
non-diabetic rats [78]. With regard to the nitrosative stress, we have 
described at least one affected pathway that may contribute to pericyte 
apoptosis. In both human retinal pericyte culture and the retina of Akita 
diabetic mice, HOG-LDL induced tyrosine nitration of prostacyclin 
synthase (PGIS) and decreased its activity, resulting in thromboxane 
receptor stimulation which subsequently mediated pericyte apoptosis 
[62]. The apoptosis was attenuated by inhibition of the thromboxane 
receptor or cyclooxygenase-2, and also by restoration of the PGIS 
activity with superoxide dismutase or L-N(G)-nitroarginine methyl 
ester (L-NAME, a nonselective nitric oxide synthase inhibitor) [62]. It 
has been reported that ox-LDL, but not native LDL, markedly increased 
lipid peroxidation, cytosolic phospholipase A2 (cPLA2) activation, 
and arachidonic acid release in a time- and dose-dependent manner 
in retinal pericytes; these effects were strongly inhibited by cPLA2 
inhibition, and by α-tocopherol [79]. 

Lipid peroxidation, phospholipase A2 activation, and modulation of 
the downstream eicosanoids represent a classic link between oxidative 
stress and inflammatory responses. Similar to its effects in pericytes, 
ox-LDL also activated cPLA2 and released arachidonic acid in both 
macrophages and fibroblasts; loss of cPLA2 activity, either by genetic 
knockout in mice, or by treatment with a cPLA2 inhibitor, resulted in 
attenuation of arachidonic acid release and apoptosis in response to ox-
LDL [80]. In parallel findings using rat renal mesangial cells, activation 
of cPLA2 by ox-LDL resulted in prostaglandin E2 production, which 
was suppressed by α-tocopherol [81]. In addition, ox-LDL induced 
cyclooxygenase-2 protein expression and prostaglandin E2 release 
in endothelial cells [82], consistent with a higher expression of 
cyclooxygenase-2 in human diabetic retina [83]. Nonsteroidal anti-
inflammatory drugs including selective cyclooxygenase-2 inhibitors 
were beneficial in experimental DR [84], and also showed promise 
in reducing fluorescein leakage in a small pilot clinical study [85], 
although that study failed to demonstrate significant benefits in visual 
function in patients with DME. In our earlier gene array studies we 
observed altered gene expression of prostaglandin E synthase in 

human retinal pericytes after exposure to HOG-LDL, but the level 
of prostaglandin E2 was not measured in that study [68]. These data 
highlight the importance of the eicosanoid pathway in mediation of 
ox-LDL-induced inflammation in retinal vasculature.

Some other cellular markers of inflammation have been evaluated. 
HOG-LDL increased the monocyte chemoattractant protein-1 (MCP-
1) secretion, and nuclear factor-κB (NF-κB) activation in human 
retinal pericytes; the effects were attenuated by pigment epithelium-
derived factor (PEDF) in a dose-dependent manner, suggesting that 
the inhibitory effect of PEDF on MCP-1 was at least partially through 
the blockage of NF-κB activation [76]. HOG-LDL also selectively 
reduced the expression of tissue inhibitor of metalloproteinase-3 
(TIMP-3) at both mRNA and protein levels in pericytes, a unique 
effect amongst all other matrix metalloproteinases (MMPs) and their 
natural inhibitors (TIMPs) [86]. Additional evidence that HOG-LDL 
induces inflammation in pericytes includes up-regulation of the acute-
phase gene, pentraxin 3 [68], which was also up-regulated by ox-LDL 
in human vascular smooth muscle cells [87] and strongly expressed in 
atherosclerotic lesions [88].

ER stress has been a newly discovered mechanism that is implicated 
in DR, and can be induced by ox-LDL [72,89-92]. When incubated with 
HOG-LDL, human retinal pericytes exhibited eIF2α phosphorylation, 
ATF6 nuclear translocation, and increased GRP78, typical signs of 
ER stress [72]. HOG-LDL also increased the expression of sXBP-1 (a 
transcription factor involved in ER stress), CHOP (an ER specific pro-
apoptotic factor), and other pro-apoptotic factors including caspase-3 
and BAX, but decreased the anti-apoptotic protein BCL-2. These 
data suggest that HOG-LDL induces ER stress and CHOP activation 
in pericytes, resulting in transcription of a series of pro-apoptotic 
genes and suppression of BCL-2, eventually leading to apoptosis [72]. 
ER stress markers were elevated in the retina of a mouse model of 
combined diabetes and hypercholesterolemia, compared with that of 
either diabetes or hyperlipidemia alone [72], and were also detectable 
in the retina of diabetic patients, but not in non-diabetic individuals 
[72]. 

To explore the additional mechanisms underlying the apoptosis 
induced by modified LDL, we investigated the mitogen-activated 
protein kinase (MAPK) pathway [71]. Exposure to HOG- vs. N-LDL 
induced similar degrees of phosphorylation of extracellular signal-
regulated kinase (ERK), p38, and Jun N-terminal kinase (JNK), and 
inhibition of ERK, p38, and JNK phosphorylation did not attenuate 
apoptosis, suggesting that modified LDL elicits apoptosis independent 
of the MAPK pathway [71]. Recently, we reported evidence supporting 
a role of the Wnt signaling pathway in DR [78,93]. In retinas from 
patients with DR and diabetic animals, we detected elevated levels and 
nuclear translocation of β-catenin, a key effector in the canonical Wnt 
pathway, together with higher levels of LDL receptor-related proteins 
5 and 6, co-receptors of Wnts. Activation of β-catenin by high glucose 
was attenuated by aminoguanidine, indicative of a role of oxidative 
stress in the Wnt pathway activation. Consistent with this, Dickkopf 
homolog 1, a specific inhibitor of the Wnt pathway, ameliorated 
retinal inflammation and vascular leakage in streptozotocin-diabetic 
rats, and neovascularization in an oxygen-induced-retinopathy model 
[93]. In a more recent study, 4-HNE, an important component of 
ox-LDL, activated the Wnt pathway in retinal endothelial cells and 
retinal pigment epithelial (RPE) cells; the effect was blocked by the 
antioxidant, n-acetylcysteine (NAC) [78]. In streptozotocin-diabetic 
rats, NAC treatment reduced 4-HNE and 3-nitrotyrosine levels, and 
attenuated the Wnt pathway activity in retina [78].
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To gain a panoramic view of the gene expression in pericytes in 
response to modified lipoproteins, we conducted a microarray study, 
in which human retinal perictyes were incubated with HOG-LDL 
vs. glycated LDL vs. native LDL [68]. HOG-LDL induced a gene 
expression pattern that was markedly distinct from that of N-LDL or 
G-LDL, whereas the latter two shared a similar expression pattern. 
A comparison of the responses to HOG- relative to N-LDL revealed 
60 genes with differential expression over 1.7 fold in quadruplicate 
experiments. The HOG-LDL-responsive genes represented members 
of multiple functional pathways, including fatty acid, eicosanoid, 
and cholesterol metabolism, fibrinolytic regulation, cell growth and 
proliferation, cell stress responses, the kinin system, and angiogenesis. 
These data will help delineate the signalling pathways responsive to 
modified LDL in pericytes.

Non-vascular retinal cells
We have recently examined the effects of HOG-LDL on cultured 

human retinal Müller cells, measuring cell viability, oxidative stress, and 
ER stress [91]. HOG-LDL reduced cell viability by triggering apoptosis, 
as shown by increased TUNEL staining, higher levels of cleaved PARP 
and caspase-3, as well as altering the balance between BAX and BCL-2 in 
favor of apoptosis. HOG-LDL enhanced both oxidative and ER stresses 
in Müller cells; and inhibition of either of these stresses attenuated 
apoptosis. Further, inhibition of oxidative stress by NAC resulted in 
reduced ER stress, suggesting that the latter is downstream of the former. 
The effects of HOG-LDL were largely mimicked by 7-ketocholesterol and 
4-HNE, two major components of modified LDL.

Recently, we explored the effect of HOG-LDL on human RPE cells 
[94]. As in other cells, HOG-LDL induced ER stress and reduced the 
viability in RPEs. Both apoptosis and autophagy contributed to the 
cell death. We further tested the potential beneficial effects of HDL on 
HOG-LDL-induced toxicity: native HDL, but not oxidized or glycated 
HDL, protected RPEs from the insult of HOG-LDL, suggesting that 
loss of HDL protection due to modification by oxidation and/or 
glycation in diabetes may represent another mechanism contributing 
to DR development.

The anatomical positioning of the RPE layer enables the numerous 
functions of these cells to support the neural retina. These functions 
include formation of the outer BRB, supply and exchange of nutrients 
between retina and choroidal vasculature, retinoid storage and 
metabolism, maintenance of photoreceptor outer segment length, 
secretion of growth factors, and many others [95]. Dysfunction of 
the RPE is recognized in age-related macular degeneration, and has 
increasingly been implicated in DR [96]. As part of its role in retinal lipid 
metabolism, the RPE internalizes LDL and ox-LDL in large quantities, 
via the LDL receptor and CD36 scavenger receptor, respectively 
[97,98]. Consistent with our findings, earlier studies have shown that 
ox-LDL impairs processing of outer rod and cone segments by the 
RPE by perturbing the fusion of lysosomes with phagosomes [99,100], 
thus accelerating the onset of RPE senescence and death [57,101-
103], increasing VEGF and decreasing PEDF expression [57,102,104], 
impairing outer BRB integrity [57], and enhancing oxidative stress and 
inflammation [57]. In RPE cells, β-catenin was also elevated by ox-LDL 
[57], similar to the effect observed in retinal pericytes [78,93]. Overall, 
the data indicate that extravasated, modified LDL is injurious to retinal 
cell types beyond the capillary vascular cells, and thus may contribute 
to the generalized pathology in DR.

Summary
In conclusion, we propose a hypothesis that serves to unify the 

data from epidemiological studies, recent clinical trials with fenofibrate 
intervention, and exploratory laboratory work. In this hypothesis, 
lipoproteins in the circulation have an indirect, yet important, role 
in the development of DR, which is contingent on BRB impairment 
and lipoprotein extravasation, patchy at first, but later widespread. 
Extravasated lipoproteins become modified by oxidation and 
glycation, subsequently contributing to prolonged, generalized retinal 
neurovascular injuries. Additional studies are ongoing to characterize 
the detailed mechanisms of lipoprotein-mediated retinal injuries: it is 
hoped that these will offer deeper insights into the DR pathogenesis, 
and will lead to new measures for prevention and therapy.
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