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Introduction
Recent years have seen tremendous progress in genome editing 

tools, which have been widely applied in facilitating the functional 
investigation of specific genes or mutations, transcriptional regulation, 
epigenetic modification, even gene therapy and drug delivery [1-
4]. Comparing with ZFNs (Zinc finger nucleases) and TALENs 
(Transcription activator-like effector nucleases) [5], CRISPR/Cas 
(Clustered regularly interspaced short palindromic repeats/CRISPR 
associated) systems have become one of the most popular tools due to 
their simplicity, high efficiency and versatility (Table 1).

CRISPR/Cas systems were found in adaptive immune systems 
from 50% of bacteria and 90% of archaea [6]. A typical CRISPR/Cas9 
system contains two components Cas9 protein and SgRNA (single 
guide RNA) (Table 2). SgRNA is consisted of CRISPR RNA (crRNA) 
and trans-activating crRNA (tracrRNA) [7]. gRNA directs Cas9 protein 
to target DNA through recognizing PAM (Protospacer Adjacent 
Motif) sequence. In CRISPR/Cas9 system, Cas9 targets and cleaves 
DNA at the site PAM sequence is 5'-NG/AG [8]. During the last four 
years, development on modified CRISPR/Cas systems has remarkably 
broadened the applications in scientific and clinical fields [2-4]. In this 
review, we summarized the progress on modified Cas proteins as well 
as their applications (Table 1).

Cpf1 belongs to the type V CRISPR/Cas systems. Cpf1 has the 
similar endonuclease function as cas9 protein [9] (Table 2). Comparing 
with typical CRISPR/cas9 system, CRISPR/Cfp1 system has three 
distinct characteristics. Firstly, to target DNA, only one crRNA is 
required in CRISPR/Cfp1 system while both crRNA and tracrRNA are 
required in CRISPR/Cas9 system [10,11]. Thus, the design of SgRNA is 
much easier in CRSIPR/Cpf1 system. Secondly, CRISPR/Cpf1 system 
is a short T-rich PAM rather than the G-rich PAM in typical CRISPR/
Cas9 system. Therefore, the genome regions for Cpf1 protein targeting 
and DNA cleaving are not limited in G-rich regions, which offer more 
genome editing-sites options. Thirdly, Cpf1-crRNA complex cleaves 
target DNA and creates a staggered DNA double-stranded break [9]. 
Thus, Cpf1 generates a sticky ends of DNA cleavage break rather than 
the blunt ends by Cas9 protein [7,12,13], which is appropriate for gene 
insertion by non-homologous end joining (NHEJ) in the mammalian 
genome [14]. Recent crystal structure demonstrated the striking 
similarity and significant differences between Cpf1 and Cas9 [15].

C2c2 is one effector protein of class 2 type VI systems (Table 2). 
Although C2c2 lacks known homology domain of DNA nuclease, it 
functions as an RNase due to containing two HEPN (Higher Eukaryotes 
and Prokaryotes Nucleotide-binding) domains [16,17]. Thus, different 
from other RuvC domain-containing Cas proteins, CRISPR/C2c2 
system can effectively cleave RNA. Only one crRNA is required for 
RNA cleavage in CRISPR/C2c2 system. Then, C2c2 cleaves ssRNA 
targets which contain complementary protospacers. CRISPR/C2c2 
system prevents sequence-specific mRNA in a RNA-guiding manner 
[17]. Up to date, CRISPR/C2c2 system has become one of the most 
efficient tools for RNA editing.

Better understanding of mechanisms of Cas proteins helps 
to explore their potential applications. Two modified Cas, dCas9 
(deficient Cas9) and dC2c2 (deficient C2c2), were successfully used in 
transcriptional regulation and epigenetic modification (Table 1) [18]. 
dCas9, a catalytically inactive Cas9, losses its endonuclease activity due 
to carrying a H84A mutation and a D10A mutation [19]. However, it 
still remains its DNA binding ability in a sequence-specific manner. 
Also, dCas9-fusion protein can be activator, repressor or epigenetic 
modular via fused to other effector domains. For example, dCas9-gRNA 
complex could decrease gene expression through disturbing the process 
of transcription elongation, RNA polymerase or transcription factor 
binding [20]. dcas9-KRAB (Kruppel-associated box) can enhance 
the ability of transcriptional inhibition. dCas9-VP16 or dCas9-VP64 
complex can promote gene expression through fused with activation 
domains VP16/VP64 [21-24]. Moreover, dCas9 has been developed to 
be a power tool for epigenome editing. p300 core, which is the core 
domain of HAT (Histone Acetyltransferase), is fused to dCas9 to 
catalyze the addition of a H3K27 acetylation mark. Then dCas9-p300 
fusion protein can activate gene expression through targeting promoter, 
proximal enhancers and distal enhancers [25]. dC2c2, a catalytically 
inactive C2c2, losses its endoribonuclease activity due to a mutation 

*Corresponding author: Ling Zhao, State Key Laboratory of Ophthalmology,
Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie South Rd,
Guangzhou, China, Tel: +862087330490; E-mail: lingzhao1976@126.com 

Received July 29, 2016; Accepted August 09, 2016; Published August 16, 2016

Citation: Mei T, Liu CJ, Yang J, Tai L, Zhao L (2016) Modified Cas (CRISPR-
associated proteins) for Genome Editing and Beyond. Adv Tech Biol Med 4: 187. 
doi: 10.4172/2379-1764.1000187

Copyright: © 2016 Mei T, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
As one of the most popular tools for genome editing, CRISPR/Cas9 system has been widely used in gene 

targeting, transcriptional regulation, epigenetic modification, even in gene therapy and drug delivery. Although 
CRISPR/Cas9 system provides a simple, specific and high efficient platform, it still has some limitations. Recently, 
several modified versions of CRISPR/Cas systems (Cpf1, C2c2, dCas9 and dC2c2, et al.) have been remarkably 
developed for more powerful and customizable genome editing and function studies. In this review, we summarized 
the key findings and progress on Cas9 and modified Cas proteins, which would help to better understand CRISPR/
Cas systems and advanced future studies on their applications. 
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in its HEPN domain. dC2c2 can be used to target sequence-specific 
mRNAs to regulate their functions. In addition, dC2c2 can also be 
fused with fluorescent protein to track specific RNAs localization [17].

Conclusion
CRISPR/Cas systems have been widely used in genome editing, 

transcriptional and epigenetic regulation [1,26,27]. Rapid development 
in CRISPR/Cas techniques has brought new revolution in genome 
editing and beyond. Just as Heidi Ledford said, “CRISPR: Gene editing 
is just beginning” [26]. Progress on Cas9 and modified Cas proteins will 
greatly extend their applications.
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Name Type Nuclease/Endoribonuclease Activity Complexity Function References
Cas9 Type II Yes Middle SgRNA-guided targeting DNA [7]
Cpf1 Type V Yes Simple CrRNA-guided targeting DNA [9]
C2c2 Type VI Yes Simple Targeting RNA [17]
dCas9 Type II No Middle Transcriptional regulation, tracking DNA or RNA [20]
dC2c2 Type VI No Middle Transcriptional regulation, tracking RNA [17]

Table 1: Cas9 and modified Cas proteins.

System Brief Introduction

CRISPR/Cas9 CRISPR/Cas9 system is class 2 type II system from Streptococcus pyogenes. It contains two components Cas9 protein and SgRNA. gRNA directs 
Cas9 protein to target DNA through recognizing PAM sequence.

CRISPR/Cpf1 CRISPR/Cpf1 system is class 2 type V system from Acidaminococcus and Lachnospiraceae. It consists of Cpf1 protein and crRNA. crRNA directs Cpf1 
protein to target DNA through recognizing PAM sequence.

CRISPR/C2c2 CRISPR/C2c2 is class 2 type VI system from the bacterium Leptotrichia shahii. It consists of C2c2 protein and crRNA. crRNA directs C2c2 protein to 
target RNA.

Table 2: Introduction of three CRISPR Cas systems.
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