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Introduction
The most common features of diabetic retinopathy are alterations 

to the retinal microvasculature leading to microaneurysms, macular 
edema, leakage of blood into the retinal tissue and vitreous, and eventual 
blindness [1,2]. Endothelial cells, which line the microvasculature 
and provide the blood-retinal barrier, have long been regarded as a 
scapegoat for explaining changes in the increased vascular permeability 
in the course of diabetic retinopathy. However, the blood-retinal barrier 
function of the endothelial cells is supported by surrounding cells, such 
as Müller cells, pericytes, and astrocytes [3]. Since the blood-retinal 
barrier depends so heavily on this interdependent microenvironment 
where the function of one cell type depends on support from other cell 
types, any cellular injury and cell loss will have vast effects on proper 
retinal barrier function and for that matter any retinal function [4-6].

Indeed, loss of retinal cells seems to be a prominent feature of 
diabetic retinopathy. Diabetes-induced cell death has been observed in 
numerous retinal cell types such as endothelial cells [5,7-9], pericytes 
[9-11], neural retinal cells such as ganglion cells [12-14], and retinal 
glial cells such as Müller cells, astrocytes, and microglia [15-23]. 
Endothelial cell death and pericyte loss have long been assumed to play 
an important role in the loss of proper blood-retinal barrier function 
[4,9,24,25]. Despite increasing efforts to demonstrate retinal cell death 
in diabetic retinopathy, mechanisms leading to cell death by diabetes 
are only poorly understood to date. Identifying potential modes of 
cell death is complicated by the fact that for some forms of cell death, 
the pathways and markers are poorly understood and are still being 
discovered. In recent years, existing types of cell death (apoptosis and 
necrosis) have been re-classified and new subtypes of cell death have 
been added.

According to the most recent cell death nomenclature paper 
published by the Nomenclature Committee on Cell Death (NCCD) 
there are now 13 subroutines of regulated cell death identified [26]. These 
include anoikis, autophagic cell death, caspase-dependent intrinsic 
apoptosis, caspase-independent intrinsic apoptosis, cornification, 
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entosis, extrinisic apoptosis by death receptors, extrinsic apoptosis by 
dependence receptors, mitotic catastrophe, regulated necrosis, netosis, 
parthanatosis, and pyroptosis. Each type of cell death has different, and 
often not fully defined, characteristics and markers leading to increased 
complexity in correct identification of cell death mechanisms both 
in vitro and more importantly in vivo. Apoptosis is the most studied 
type of cell death in diabetic retinopathy. It has well-defined features 
and is easily detectable with established techniques, such as TUNEL 
(Terminal dUTP Nick End Labeling) assay. However, some of the cell 
death types are far more difficult to detect due to the lack of established 
markers and techniques available.

In order to establish mechanisms underlying the development of 
diabetic retinopathy and to determine whether cell death is crucial 
for the progression of the disease, a better understanding of potential 
types of cell death in the diabetic retina must be achieved. This will 
then allow for more targeted therapies to combat cell death in diabetic 
retinopathy. This review will provide an overview of the various retinal 
cell types undergoing cell death in diabetic retinopathy and attempt to 
assign cell death classification to these dying cells.

Apoptosis: Extrinsic Versus Intrinsic
The most well defined form of cell death is apoptosis. Apoptosis, 

originally introduced by Kerr et al. in 1972, is a term that describes a 
form of programmed cell death resulting in cytoplasmic and nuclear 

Journal of Clinical & Experimental 
OphthalmologyJo

ur
na

l o
f C

lin
ica

l & Experimental Ophthalm
ology

ISSN: 2155-9570



Citation: Feenstra DJ, Yego EC, Mohr S (2013) Modes of Retinal Cell Death in Diabetic Retinopathy. J Clin Exp Ophthalmol 4: 298. doi: 10.4172/2155-
9570.1000298

Page 2 of 7

Volume 4 • Issue 5 • 1000298
J Clin Exp Ophthalmol
ISSN: 2155-9570 JCEO, an open access journal

condensation, a specific pattern of DNA fragmentation, and eventual 
demise of the cell into apoptotic bodies to be phagocytosed by 
surrounding cells with very little inflammation involved in the process 
[27]. The common theme in identification of apoptotic cell death is the 
use of TUNEL staining or other methods that are aimed to specifically 
detect the apoptotic DNA laddering pattern [28-30]. However, due to 
recent advancements in cell death studies and changes in cell death 
nomenclature, classification of apoptosis is not as simple as detection of 
specific DNA fragmentation.

Apoptosis can be divided into various subcategories according to 
both the stimuli and the pathways leading to execution of cell death, 
and should therefore be a term used with caution. ‘Extrinisic Apoptosis’ 
for example is used to define cell death induced by binding of lethal 
ligands including FAS/CD95 ligand, tumor necrosis factor α (TNFα), 
or TNF-related apoptosis inducing ligand (TRAIL) to their respective 
death receptor [26,31]. Upon binding of these ligands to the death 
receptor, the “death domain” of the receptor recruits the assembly of 
the “death-inducing signaling complex” (DISC), a platform of various 
proteins. The DISC can differ depending on the death receptor involved 
but typically results in activation of caspase-8 [26,32-34]. Depending 
on cell type, active caspase-8 initiates one of two distinct pathways. 
First, active caspase-8 can directly cleave caspase-3, known as an 
executioner caspase in the apoptotic process [35]. Alternatively, active 
caspase-8 can cleave BH3-interacting domain death agonist (BID) 
creating truncated BID (tBID). tBID then binds Bcl-2 allowing BAX 
to form a pore in the outer membrane of the mitochondria enabling 
the release of cytochrome c into the cytosol. This triggers formation of 
the canonical ‘apoptosome’ via assembly of APAF1 with pro-caspase-9, 
cytochrome c, and dATP leading to caspase-9 activation, which in turn 
activates caspase-3 [26,36]. 

Another type of apoptosis, ‘intrinsic apoptosis’ is similar to 
extrinsic apoptosis in that there is eventual activation of caspase-3 
as the executioner caspase. However, rather than an extrinsic ligand 
binding to a death receptor, apoptosis is triggered by intracellular stress 
such as DNA damage, oxidative stress, or excitotoxicity [26]. Regardless 
of the intracellular stress that initiates intrinsic apoptosis, the intrinsic 
and extrinsic pathways converge at the mitochondria. Increased pore 
formation by either bak or bax, or pore formation by a multi-protein 
complex termed the permeability transition pore (PTP) promotes 
the release of proteins such as cytochrome c, apoptosis-inducing 
factor (AIF), and endonuclease G (ENDOG) from the mitochondria 
into the cytosol [26,37,38]. In addition, alterations of the respiratory 
chain lead to increased reactive oxygen species (ROS) production 
[26]. As described above, apoptosome formation induces caspase-9 
and subsequent caspase-3 activation. Activation of caspse-3 initiates 
events that are responsible for the specific DNA cleavage pattern seen 
in apoptotic cell death.

In contrast, AIF and ENDOG can translocate to the nucleus leading 
to DNA fragmentation that is independent of caspase activation [36,39-
44]. In this case, apoptotic cell death occurs even in the absence of 
active caspases or when caspases are pharmacologically inhibited. This 
allows for even further classification of intrinsic apoptosis into caspase-
dependent and caspase-independent intrinsic apoptosis [26]. Therefore, 
observation of DNA fragmentation alone by TUNEL staining is not 
sufficient to distinguish between the different types of apoptosis.

Much of the research in diabetes-induced retinal cell death has been 
focused on identifying apoptosis using the TUNEL assay as the method 
of choice. Some TUNEL based studies were supported by additional 
data identifying active caspase-3. TUNEL staining has identified 

increased endothelial cell apoptosis in retinas of diabetic and galactose 
fed rats, compared to control animals [9,45,46]. A similar increase in 
TUNEL staining was seen in retinal endothelial cells of diabetic mice 
[47]. A recent study confirmed these results in the retinas of human 
subjects with diabetic retinopathy compared to those without [48]. 
TUNEL staining has also been used in studies showing that neutrophils 
from diabetic rats, when co-cultured with human endothelial cells, led 
to increased endothelial cell apoptosis indicating that other cells types 
when exposed to hyperglycemia induce endothelial cell death via an 
apoptotic pathway [49]. In other studies, propidium iodide (PI), which 
when injected intravenously will fluoresce after leakage through injured 
cell membrane and bind to DNA or RNA, has been used to detect 
endothelial cell apoptosis in diabetic rats [7]. However, PI staining 
does not allow for discrimination between cells undergoing apoptosis 
or necrosis [7]. While much of the apoptosis research has used DNA 
fragmentation alone, some more detailed studies have shown that high 
glucose leads to cytochrome c release and changes in mitochondrial 
morphology in endothelial cells indicating a mitochondria-mediated 
apoptotic mechanism [50]. This is further supported by a study that 
demonstrated that overexpression of bcl2, an anti-apoptotic member 
of the bcl2 family, prevented capillary degeneration in diabetic mice 
[51]. Other studies have demonstrated that hyperglycemia can initiate 
pro-apoptotic pathways in endothelial cells by measuring caspase-8 and 
caspase-3 activity indicating the caspase dependency of the apoptotic 
process [5,47,52,53]. Although these studies provide good evidence 
that caspase-dependent apoptosis is the predominant type of cell death 
for endothelial cells when exposed to a hyperglycemic environment, 
more studies are needed to determine whether apoptotic cell death in 
endothelial cells is mediated by an intrinsic or extrinsic mechanism in 
diabetic retinopathy.

Apoptosis has also been suggested as the type of cell death in 
pericytes during the progression of diabetic retinopathy. TUNEL 
staining demonstrated increased pericyte apoptosis in retinas of diabetic 
and galactose fed rodents compared to control animals [9,45,54]. 
Increased pericyte apoptosis has also been shown in retinal tissue 
of diabetic patients compared to non-diabetic patients, again using 
TUNEL staining [10,11]. In addition, increased caspase-8 and caspase-3 
activity is seen in rat retinal pericytes in high glucose conditions [55]. 
Similarly to endothelial cells, mitochondria of retinal pericytes display 
significant fragmentation and metabolic dysregulation and this has 
been directly implicated in accelerated apoptosis in retinal pericytes in 
diabetic retinopathy [56]. These studies all indicate a similar caspase-
dependent apoptotic mechanism for pericytes as seen for endothelial cells.

Additionally, TUNEL staining has been used to identify apoptosis 
in a variety of retinal cell types, although numbers of these studies 
are limited. Increased apoptosis in neural retinal cells such as 
ganglion cells of diabetic rats compared to non-diabetic rats has been 
detected [12,13,18,46,54]. Amacrine cells have also been shown to 
undergoapoptosis, as characterized by TUNEL staining and staining 
for active caspase-3, using the Ins2Akita mouse model [57]. It has been 
suggested that there is selective S-cone loss as identified by TUNEL 
staining in diabetic retinopathy [58]. However, more detailed studies 
are needed to further confirm the aforementioned mechanisms and to 
allow for a distinct classification of apoptosis in these cells. Although 
numerous studies have established that apoptosis of several cell types 
occurs in the diabetic retina, the next important step will be to identify 
the link between increased glucose levels and the initiation of caspase-
dependent apoptosis.
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Necrosis: A Regulated Pathway to Cell Death?
Historically, necrosis was considered the type of cell death “on the 

other end” of the cell death spectrum. Necrosis has been a term used for 
‘accidental cell death’ rather than ‘programmed cell death,’ which was 
reserved for apoptosis. It was defined in the classification of cell death 
article published by the NCCD in 2005, as cell death with no apparent 
signs of apoptosis or autophagy [59]. The morphological appearance 
of cells undergoing necrosis were described as having features such as 
cytoplasmic swelling, mechanical rupture of the plasma membrane, 
dilation of cytoplasmic organelles, and chromatin condensation 
[59]. The understanding of pathways leading to necrosis in vivo was 
vague at best. Due to the lack of a clear mechanism for necrosis, new 
terms describing “necrosis-like” cell death were introduced. One of 
these new terms was “apoptonecrosis” where apoptosis evolves into 
necrosis, although use of this term was discouraged to avoid further 
confusion until pathways involved in this process were fully identified 
[59]. However, out of this research, the picture of “regulated necrosis” 
and it’s importance in various physiological and pathological settings 
evolved [26,60]. Triggers for regulated necrosis include excitotoxicity, 
DNA damage resulting in DNA alkylation, and ligands such as TNF 
and FasL binding to their respective death receptors [26,61-65]. These 
triggers initiate ubiquitination of receptor interacting kinase (RIP) 1 
and subsequent activation of RIP3. Whereas RIP3 would activate pro-
caspase-8 in apoptotic conditions, in experimental or pathological 
settings where caspase-8 is absent RIP3 can lead directly to execution 
of regulated necrosis [26,61-63]. Crucial characteristics of regulated 
necrosis include death receptor signaling, absence of caspase activity, 
and RIP1 and /or RIP3 activation. Activation of pathways in regulated 
necrosis still lead to the classical morphological features associated with 
necrosis [26]. All these new studies indicate that the process of necrotic 
cell death can be regulated depending on microenvironment rather 
than being a random event as previously assumed.

Necrosis has been implicated in the process of diabetic retinopathy. 
Increased necrotic cell death of pericytes has been observed in the 
retinas of diabetic rats and humans using light and electron microscopy 
[66-68]. This particular pericyte cell death was later described as 
“selective necrosis” [69]. Reasoning for this designation was most likely 
due to the assumption that this cell death caused by diabetic conditions 
was accidental. Although the newer studies claim apoptosis as the 
major type of cell death for pericytes in diabetic retinopathy, one cannot 
exclude that some pericytes might undergo cell death via regulated 
necrosis depending on microenvironment and the progression of the 
disease. Further clarification of the definition for necrosis and the 
pathways involved may be necessary to better understand and identify 
this process in the diabetic retina.

Autophagic Cell Death
Autophagic cell death may be the most puzzling type of cell death 

identified to date. It is currently defined by the NCCD as “a type of 
cell death that occurs in the absence of chromatin condensation but 
accompanied by massive autophagic vacuolization of the cytoplasm” 
[70]. The first study demonstrating that autophagic cell death exists 
in vivo showed that knockdown of key genes required for autophagy 
reduced cell death in Drosophila melanogaster [71]. Autophagic 
cell death has also been identified in cancer cells exposed to 
chemotherapeutic agents in vitro [72,73]. Cells dying by autophagic 
cell death have very little association with phagocytes, contrary to cells 
dying by apoptosis which are eventually removed via phagocytosis 
[70]. In order to determine autophagic cell death, cell death must be 

prevented by inhibition of the autophagic pathway either by chemicals 
or knockdown of essential autophagic proteins [26,70]. Detection of 
common markers used to observe increases or decreases in autophagy, 
such as LC3 (microtubule-associated protein 1 light chain 3) or ATG 
(autophagy) family members, are not sufficient to indicate autophagic 
cell death.

Autophagy is the process of removing unwanted or damaged 
cellular material or organelles by packaging these materials into 
autophagosomes, which are then targeted for degradation. In most 
physiological settings, autophagy is considered a beneficial and a pro-
survival mechanism used by the cell and inhibition of autophagy can 
actually lead to increased apoptosis [74-78]. Therefore, an increase 
in autophagic flux does not always imply autophagic cell death. For 
example, if cell death occurs with increased markers of autophagy 
but cannot be blocked by autophagy inhibition, it is not indicative of 
autophagic cell death. To classify cells as dying by autophagic cell death, 
inhibition of proteins within the autophagic pathway must promote cell 
survival.

Whether autophagic cell death is occurring in the progression of 
diabetic retinopathy has not been determined to date. A recent study 
indicated increased autophagy by measuring levels of ATG5, but 
whether this ultimately leads to autophagic cell death in retinal cells 
during diabetic retinopathy has not been addressed [79].

Pyroptosis: Inflammation Driven Cell Death
An emerging type of cell death that is attracting increasing attention 

is ‘pyroptosis.’ Pyroptosis is an inherently inflammatory-mediated form 
of cell death, defined as being caspase-1-dependent [26,80,81]. During 
pyroptosis, there is assembly of a multiprotein platform allowing for 
induced proximity-mediated activation of caspase-1. Active caspase-1 
then cleaves the pro-inflammatory cytokines IL-1β and IL-18 from 
their inactive precursors to their biologically active forms [80-83]. The 
multiprotein platform allowing for caspase-1 activation is termed either 
the inflammasome or pyroptosome. Inflammasomes are comprised of 
the ASC (Apoptosis-associated Specklike protein containing a CARD) 
adaptor protein and a cytosolic sensor of either DAMPS (Danger 
Associated Molecular Patterns) or PAMPS (Pathogen Associated 
Molecular Patterns) such as a NLRs (NOD-like receptors) or AIM2 
(Absent In Melanoma 2) [84-88]. The pyroptosome is an assembly 
of ASC dimers that can directly activate caspase-1 [89]. Prevention 
of pyroptosis is accomplished by inhibition of caspase-1 either by 
pharmacological intervention or caspase-1 knockout in animal models. 
Although it is now very well established that initiation of pyroptosis 
is caspase-1 and IL-1β driven, the execution phase of pyroptosis is 
not yet completely understood. It has been shown that pyroptosis 
shares traits with both apoptosis and necrosis in the execution phase 
[70,90]. Execution of pyroptotic cell death might depend on cell type, 
microenvironment, and stimulus. Different pathways might be involved 
in the execution of pyroptosis bringing into question whether TUNEL 
staining is actually able to identify all pyroptotic cells. 

This inflammatory-mediated process of cell death is particularly 
intriguing in the context of diabetic retinopathy. A disease which 
was originally thought of as a purely microvascular disease, diabetic 
retinopathy is now being viewed as a potential chronic inflammatory 
disease leading to changes in the retinal microvasculature [1,91,92]. 
Studies have demonstrated that diabetes leads to activation of caspase-1 
and IL-1β production in the retinas of diabetic and galactosemic mice 
as well as diabetic rats [18,93,94]. Active caspase-1 and IL-1β was also 
detected in retinal tissue of diabetic patients [15,16] and the vitreous 
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of patients with proliferative diabetic retinopathy [95,96]. Inhibition of 
the caspaspe-1/IL-β signaling pathway prevented the development of 
diabetic retinopathy in diabetic and galactosemic animals indicating 
that this inflammatory pathway is important for disease development, 
potentially via pyroptotic cell death of retinal cells that are crucial for 
proper retinal function [16,18].

When looking at specific cell types undergoing pyroptotic cell death 
in the course of diabetic retinopathy, retinal glial cells stand out. It has 
been shown that caspase-1 activity and IL-1β production is increased 
in vitro in Müller cells following exposure to hyperglycemic conditions 
and cells die as a consequence [97,98]. Inhibition of the caspase-1 
pathway prevented Müller cell death under these conditions. In Müller 
cells and microglia, it has been shown that use of minocycline, a drug 
that decreases caspase-1/IL-1β signaling, is able to prevent cell death 
[16,18]. These in vitro studies are an indication that glial cells might 
respond to chronically elevated glucose levels by undergoing pyroptotic 
cell death.

Since execution of pyropototic cell death lacks specific markers, 
identifying retinal cells dying by pyroptosis in vivo is a difficult task. 
Studies using EM show that there is Müller cell death occurring in 
diabetic retinopathy [69]. Dying Müller cells are described as being 
hypertrophic consistent with the notion that during pyroptosis, cells 
swell rather than shrink as observed in apoptotic cell death [99]. Other 
studies indicate that there is simply hypertrophy and glial dysfunction 
associated with the disease [18]. A previous study by us has shown that 
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) accumulates in 
the nucleus of Müller cells in the retinas of diabetic rats [17]. Nuclear 
accumulation of GAPDH has been closely associated with cell death 
induction [100-102]. Interestingly, hyperglycemia-induced nuclear 
accumulation of GAPDH was mediated by activation of the caspase-1/
IL-1β pathway [103,104]. Whether caspase-1/IL-1β-mediated GAPDH 
nuclear accumulation is part of the pyroptotic pathway in general has 
yet to be determined. As our results indicate (Figure 1), diabetes leads to 

Müller cell loss in the retinas of diabetic mice. Due to the lack of specific 
markers for pyroptotic cell death, Müller cells were stained against 
glutamine synthetase and CRALBP (cellular retinaldehyde-binding 
protein)  and counted. To confirm that Müller cell loss was dependent on 
the activation of the caspase-1/IL-1β pathway, IL-1 receptor knockout 
mice were made diabetic and Müller cells were counted in retinas of 
non-diabetic and diabetic IL-1 receptor knockout mice. Inhibition of 
the caspase-1/IL-1β pathway prevented diabetes-induced Müller cell 
loss. These studies are the first to clearly demonstrate Müller cell loss 
in diabetes and to suggest that cell death might occur via a pyroptotic 
mechanism. Based on our studies, we suggest that hyperglycemia leads 
to activation of caspase-1 and subsequent production of IL-1β leading 
to Müller cells death via pyroptosis (Figure 2). Since glial cells in general 
respond to hyperglycemia by producing pro-inflammatory cytokines, 
future studies need to determine whether all glial cell types are able to 
undergo pyroptotic cell death.

Conclusion
In conclusion, cell death seems to be a prominent feature in the 

progression of diabetic retinopathy. Several retinal cell types have 
been shown to undergo various forms of cell death (Table 1). A lot of 
emphasis has been given to study apoptosis of retinal cells during the 
progression of the disease. Based on the studies available, it is fair to say 
that endothelial cells are predominantly dying by an apoptotic process, 
however the type of apoptosis has yet to be determined. Several studies 
point to a caspase-dependent mechanism involving mitochondrial 
damage but more studies are needed to fully determine an intrinsic 
or extrinsic apoptotic pathway. Other cell types suggested to undergo 
apoptosis are ganglion cells, amacrine cells, and S-cones. However, 
due to the limited number of studies on cell death in these cell types, 
a conclusion as to whether these cells are truly dying of apoptosis 
cannot be made at this time. The picture is not clear for pericytes; both 
apoptosis as well as necrosis have been suggested as modes of cell death. 
Given the new research on necrosis that indicates necrosis can also be a 
regulated process like apoptosis, more studies are needed to determine 
precise mechanisms of pericyte cell death in diabetic retinopathy. The 
type of cell death might depend on the phenotype of pericytes and 
the microenvironment surrounding these cells. Inflammation-driven 
pyroptosis is an emerging form of cell death that is receiving a lot of 
attention right now. This type of cell death is intriguing to study in 
the context of diabetic retinopathy since new understandings of the 
disease suggest that diabetic retinopathy is a chronic inflammatory 
disease. Müller cells are prime candidates for this form of cell death 
due to the fact that diabetes-induced cell death is dependent on the 

Figure 1: Diabetic wild type (gHb= 11.0 ± 1.8) and IL-1R1-/- (gHb= 12.1 ± 0.4) 
were sacrificed after 7 months of diabetes along with age matched normal 
controls (wild type gHb= 3.8 ± 0.55, IL-1R1-/- gHb= 3.2 ± 0.2). Animals were 
scarified and eyes were isolated and fixed in formalin. Retinal sections were 
processed for both glutamine synthase, CRALBP, and DAPI staining and 
blinded samples were visualized using confocal microscopy Z-sections. The 
number of Müller cells was determined by counting three independent areas 
per retinal section and three retinal sections per animal. The number of Müller 
cells per mm2 retina is expressed as mean ± STDV (n=10 per group).
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Figure 2: Scheme of pyroptosis in Müller cells.



Citation: Feenstra DJ, Yego EC, Mohr S (2013) Modes of Retinal Cell Death in Diabetic Retinopathy. J Clin Exp Ophthalmol 4: 298. doi: 10.4172/2155-
9570.1000298

Page 5 of 7

Volume 4 • Issue 5 • 1000298
J Clin Exp Ophthalmol
ISSN: 2155-9570 JCEO, an open access journal

activation of the caspase-1/IL-1β pathway. More studies are needed to 
fully understand the mechanism underlying the process of pyroptosis 
and to determine whether glial cells including macro and micro glial 
cells are undergoing pyroptosis in diabetes. Loss of other retinal cell 
types such as astrocytes has been reported but identification of the type 
of cell death has not been made [23].

Other types of cell death such as anoikis, entosis, parthanatos, 
netosis, cornification, and mitotic catastrophe, have yet to be identified 
in the course of diabetic retinopathy but cannot be excluded from the 
process of disease development. Further development of tools capable 
of assessing these modes of cell death is needed to determine whether 
these cell death modalities are present in diabetic retinopathy.

A better understanding of how retinal cells are dying during the 
development and progression of diabetic retinopathy will allow for 
a more targeted approach to intervene in this process. Although the 
general consensus is that inhibition of cell death is beneficial for disease 
prognosis, timing at which intervention should be started and targeting 
of specific retinal cell types will be crucial for a successful outcome of 
treatments aiming to inhibit cell death. Therefore, the more knowledge 
that is attained on which cell types undergo what type of cell death, the 
more therapeutic strategies can be developed.
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Table 1: Characteristics of modes of cell death and potential retinal cell types undergoing cell death in diabetic retinopathy (for more detailed list of characteristics of cell 
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