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Nearly every biological process relies on specific interactions of 
small molecules with proteins or other cellular components. Off-
target (unexpected) interactions of small molecules are usually 
associated with dysfunctional cellular mechanisms and subsequent 
severe complications [1]. Computer simulations are currently well 
suited to address these problems [2-17] as recognized with the 2013 
Nobel Prize in Chemistry [18]. Characterizing these interactions at the 
atomic level will not only help understand the mode of action of many 
severe side effects, but will also aid in rationally designing safe drugs. 
Take cardiotoxicity as an example. In this case, a toxic small molecule 
interacts with a critical class of proteins that control the normal heart 
rhythm. These proteins mainly involve a wide range of voltage-gated 
cardiac ion channels. The harmony of the ion flows through these 
channels creates the characteristic cardiac action potential [19,20]. 
Blocking these ion channels by small molecules is a critical event that 
can often lead to acquired cardiac long QT syndrome (LQTS) and fatal 
cardiac arrhythmias [21]. Despite the long failed history of accurately 
predicting cardiac ion channel blockade (e.g. CAST [22] and SWORD 
[23]), the accumulated wealth of experimental data available now 
[24] makes them an ideal model to build and refine a computational
algorithm to better predict off-target interactions. In the absence of
experimental crystal structures of these channels, reliable qualitative and 
quantitative computational models of high sensitivity and specificity are 
still lacking [12,13]. Most of the pioneering efforts have focused mainly 
on ligand-based models [25-29]. These models are based only on the
physiochemical properties of the blocking ligands and have no relation
with the target proteins. Unfortunately, these ion channels interact with 
a wide array of chemically unrelated molecules rendering ligand-based
models very limited in practice [30-33]. Therefore, reliable structural
models that can directly predict small molecule binding to cardiac
ion channels are warranted [34,35]. Although many structural models
have been developed throughout the last three decades to address this
problem, the specificity and accuracy of these models are still lagging.
Recently and in collaboration with the Li Ka Shing Applied Virology
Institute in Alberta, Canada, our team managed to build the most
sophisticated model to predict human Ether-à-go-go-Related Gene
(hERG) ion channel blockage [2]. This model overcomes many of the
pitfalls existed in previous models. The models relied mainly on using
a single conformation or only very few conformations of the channel
[36,37], used docking scoring functions to estimate binding energies,
and had no further processing of the docked structures to investigate
the effects of solvent or ions on their stabilities. Our model incorporated 
all of the missing elements described above and revealed high accuracy 
and specificity. Applying the same concept to other cardiac ion channels 
will pave the way towards observing and characterizing small molecule 
off-target cardiotoxic effects at the atomic level.

Although LQTS has been often attributed to hERG channel 
blockage, recent studies show that multiple ion channel interactions 
are in fact required to predict changes QT intervals [38,39]. A multiple 
channel approach should explain many of the discrepancies that have 
been observed by only using a hERG blocking-based workflow. For 
example, a simultaneous blockade of a repolarizing current and a 
depolarizing current at the same level would have a very limited effect 
on the overall cellular action potential. That said, a drug that can interact 
with multiple channels could have a limited effect on the overall cardiac 

tissue as each individual interaction can balance the other. Several 
cardiac electrophysiology mathematical models have been developed 
to address this multi-channel effect. These models predict the overall 
cellular transmembrane action potential by incorporating all ionic 
currents components through highly sophisticated relations. A reliable 
structural model for each cardiac channel combined with a multi-
channel mathematical model would constitute the ultimate answer to 
two important questions; how a drug can affect the cardiac activity, and 
how to mitigate these interactions? These types of sophisticated models 
can have a substantial impact on a wide range of basic research and 
applied/commercial sectors. It can also help identify problematic drugs 
and help save the lives of many patients currently treated or will be 
treated with such drugs (work in progress).
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