
Volume 2 • Issue 3 • 1000e105J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Daniluk, J Inform Tech Softw Eng 2012, 2:3
DOI: 10.4172/2165-7866.1000e105

Editorial Open Access

Modeling in the Process of Constructing the Software for Scientific
Purposes
Andrzej Daniluk*

Department of Applied Computer Science, Institute of Computer Science, Maria Curie-Skłodowska University, Poland

*Corresponding author: Andrzej Daniluk, Assistant Professor, Department
of Applied Computer Science, Institute of Computer Science, Maria Curie-
Skłodowska University, pl. M. Curie-Skłodowskiej 1, Lublin 20-031, Poland,
E-mail: adaniluk@tytan.umcs.lublin.pl

Received August 10, 2012; Accepted August 13, 2012; Published August 16,
2012

Citation: Daniluk A (2012) Modeling in the Process of Constructing the Software
for Scientific Purposes. J Inform Tech Softw Eng 2:e105. doi:10.4172/2165-
7866.1000e105

Copyright: © 2012 Daniluk A. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Creating and implementing a design solving a chosen scientific
problem comes down to the correct solution of a given problem from
the standpoint of the scientific theory that we use, the architectural
design and abstraction of the system in the modeling language and the
creation of the proper implementation in the programming language.

A model is one of the key concepts used in natural and engineering
sciences. In science, a model is meant to be a set of general assumptions,
concepts and relationships that gives you a simplified way to describe
a selected aspect of reality. A model is also a representation of the
surrounding world in the mind of man, which, however, should not be
confused with reality.

Models are created mainly for two reasons: to understand the
problem domain better and to allow the exchange of information while
the interested persons solve the problem. Undoubtedly, a significant
amount of work and time to be devoted to the creation of an appropriate
and correct model turns out to be an excellent investment; however,
only provided that the model is properly devised and responsibly used.
The increasing scope and complexity of problems faced by modern
science and engineering more and more often call for a deliberate
approach to solving them.

It turns out that in very many cases, a simple approach based on
trying to constantly increase computing power, the number of people
involved and funding devoted to solving the problem is far from
enough. Modern science recognizes the need to use more effective and
subtle ways. System modeling seems to be one of them. Since the correct
description of the problem domain is always the basis for finding the
solution, the key issue is its formulation that is exact and corresponds
to reality. Modeling helps to identify the problem, to determine the
scale of its complexity, to propose a solution and, which is especially
important, to allow the flow of information between the interested
parties in an excellent way. Modern science treats a model as a basis for
communication between the parties interested in a given problem and
involved in its solution.

If we wish to understand the problem domain (while describing a
fragment of the existing reality), we should build a model of the problem
domain. The purpose of this model is to create a correct abstraction of
the real world. Such an abstract model should be as little complicated
as possible, but it should still reflect the real world correctly, so that the
behavior of entities in the real world could be predicted. The computer
system is a collection of subsystems formed to perform a specific task
and is described by some set of models, each of which describes a
different aspect of reality.

The standard for the implementation of model-driven software
MDD (Model-Driven Development) developed in the early 21st
Century by the OMG organization (Object Management Group) is a
very modern and technologically-advanced approach to the evolution
of object-oriented software architecture. MDD uses model-driven
development, which is an extension of the paradigm of model driven
architecture, MDA (Model-Driven Architecture) in all aspects of the
evolution of the system. MDA is not, strictly speaking, an entirely new
methodology for software development. In fact, MDA is an extension
of iterative development with the introduction of mechanisms for the
automatic transformation of models. On the basis of the assumption

of the standard for the implementation of model-driven software, the
manufacturing process of the software for scientific purposes can be
offered, consisting of the following stages:

Determination of the Problem Domain
(The process of creating concepts based on the general knowledge

on the problem domain). This phase is intended to clarify the abstract
concept that will become a real manufactured product in the future.

Development of a Mathematical Model of the Problem
Domain

(The problem domain elements recorded in the language of
mathematics).

Development of an Appropriate Numerical Algorithm
(In the proposed approach, the most important or all the essential

algorithms for understanding the problem are recorded with the use of
a formal UML notation in the form of appropriate activity diagrams).

High-level Modeling
In other words, it is a problem domain model (in terms of MDA,

the equivalent would be a PIM platform-independent model). It
is necessary to be aware of the fact that the domain objects are not
the design objects. The problem domain model describes the way of
functioning of the real world, and not how the computer system being
created works. All models are made in the UML formalism.

Low-level Modeling
(In terms of MDA, the equivalent would be a model specific to the

PIM platform). The previous phases have focussed on understanding
the problem domain, while low-level modeling is focussed on creating
an optimal solution. Low-level modeling is a process transforming
the understanding of the requirements into a model that can be
implemented in the form of software. The result of this process is to
create a design document. A design document should be formally
divided into two parts: class design and architecture mechanisms. Part
of the class design is further divided into the statistical design (diagrams
detailing the individual classes, their relationships, dependencies and
characteristics) and dynamic design (diagrams describing how the
objects of the individual classes work together, e.g. sequence diagrams).

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 2 • Issue 3 • 1000e105J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Daniluk A (2012) Modeling in the Process of Constructing the Software for Scientific Purposes. J Inform Tech Softw Eng 2:e105.
doi:10.4172/2165-7866.1000e105

Page 2 of 2

The design of architecture mechanism provides details of system-
artifact implementation.

Coding
By using the appropriate MDA/MDD tools, the system model can

be transformed into a code/framework that programmers can then
complement using their skills/experience. It is also possible to write
your own transformation rules using QVT standards.

Testing and Implementation
The suggested process may be iterative, which means the verification

and validation possibility of the respective system components at each

stage. It is possible to perform by means, e.g., of the relevant tools
provided by the technologically-advanced MDA/MDD environments.

The use of this cycle in the process of constructing the software for
scientific purposes results in:

· Shifting the burden of system development to a higher level of
abstraction and giving a central role to modeling,

· Clear separation of the system layers,

· Automatic generation of a code directly from the model,

· Implementation of mechanisms for the automatic verification and
validation of a code.

	Title
	Corresponding author
	Determination of the Problem Domain
	Development of a Mathematical Model of the Problem Domain
	Development of an Appropriate Numerical Algorithm
	High-level Modeling
	Low-level Modeling
	Coding
	Testing and Implementation

