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ABSTRACT
Human activities threaten the effectiveness of Protected Areas in preserving key natural resources. Ignoring the

temporal dimension of human on fire occurrence can lead to ineffectiveness fire management and preserved

outcomes. This study analyzes the intra-annual dimensions of fire occurrence and human-caused fire ignition factors

for the Golden Gate Highlands National Parks of South Africa. We constructed four occurrence data scenarios from

fire ignition data extracted from MODIS active fire product (2007 -2017 by splitting occurrence data into two seasons

and further split the seasons into weekdays and weekends. Application of MaxEnt method was used to assess the

performance of the models and to explain the importance of each explanatory variable. Results revealed ROADS as

the highest contributor across all the models except in Spring weekend model where INFRA outperformed ROADS.

In addition, we observed strong temporal variation with ROADS strongly influencing weekdays of both seasonal

scenarios while INFRA shows strong influence in the weekends. Model overall performance is satisfactory, above 0.8

AUC values for all the models (Winter Weekend = 0.977; Winter Weekday = 0.929; Spring Weekend = 0.896) except

Spring Weekday (0.641). In addition, Winter models are more robust in explaining the temporal distribution of

human-caused fire ignition factors of the study. Our results are reliable and significant for advising practical wildfire

management and resource allocation as well as to predict the human-caused fire ignition.
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INTRODUCTION
Fire is a natural disturbance in many ecosystems and is applied
as one of the management tools for maintaining a healthy
ecosystem particularly in Protected Areas (PAs). International
Union for Conservation of Nature (IUCN) defined PA as a
clearly defined geographical space, recognized, dedicated and
managed through legal or other effective means to achieve the
long-term conservation of nature with associated services and
cultural values. Africa has a long history of fire longer than any
other continent but current fire management issues on the
continent are complicated. For instance, the global pressure to
initiate climate mitigation programme in Africa often involve
changes in how fire is applied. Application of fire in the PAs is

conundrum driven by the safety policies and regulations that
have led to the reduction of fire ecological benefits.

Fire management strategy which includes fire prevention may be
the most cost-effective and effective mitigation programme. The
strategy includes but not limited to awareness campaigns and or
risk mitigation. In wildfire, risk is a chance of fire starting and
spreading (danger) as well as its potential damage over
environmental and human resources (vulnerability). Therefore,
wildfire risk is a combination of wildfire “danger” and
vulnerability. The concept of wildfire danger describes the
factors affecting the inception, spread and resistance to control.
Wildfire danger is related to both fire ignition and propagation.
The former depends on the fuel amount and moisture and the
presence of external cause (anthropogenic or natural) leading to
fire start.
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While fire ignition is an integral component of wildfire factors,
it is critical in wildfire danger because the chances of wildfire to
start is minimal no matter how dry weather conditions and how
the vegetation flammability is. As confirmed by data all over the
world, human presence in landscape increases the number of
ignition even above the background from lightning. Human
affects fire regime directly by altering the number and timing of
ignition of fire and indirectly by altering fuel. Henceforth, an
improved understanding of wildfire risk should address the
patterns of human activity and its relation to fire ignition. A key
resource for wildfire risk is risk zoning and mapping, a subject
on which Geospatial technology (Geographic Information
Systems and Remote Sensing) and spatial statistic have been
traditional applied.

Noteworthy, studies have been undertaken to explore the
relationship between wildfire and its causative factors with the
main aim of building predictive and explanatory models. A
review study on human cause fire occurrence modelling by
Costafreda-Aumedes, Comas, and Vega-Garcia (2018) revealed
that on annual average 14 papers were published between 2012
and 2016. Most of these researchers construct these models with
the different motivations ranging from fire prevention, fire
suppression, for supporting fire management strategies and to
develop early warning system as well as for conservation goal.
However, suggested that modeling on human activity and its
pattern is more appropriate for supporting decision making in
wildfire preventions rather than firefighting and management
after ignition. Although modeling and evaluating of human
activity as an agent of ignition is a complex task since it requires
the identification and quantification of human behaviour, a
number of authors have showed that fire ignitions exhibit strong
preference for distance to roads, settlement and infrastructure.
However the effects of different human-related drivers on fire
ignition change over time and space, and among ecosystems.

Several methods have been employed to model and evaluate the
human-related drivers to fire ignition. Logistic regression has
been intensively applied as they can handle unbalanced sample
for rare wildfire presence versus common wildfire occurrence
and geographically weighted regression. However, most of the
used techniques suffer from multicollinearity problems.
Machine learning algorithms such as random forest,
classification and regression trees and weight of evidence
properly predict and explain fire occurrence. One of the
advantages of these algorithms is that they are non-parametric
models and their input explanatory variables interrelationship
are not defined a prior but rather derived from iterative training
and testing using random data subset. Recently, one of the
existing machine learning tools, presence only Maximum
Entropy (MaxEnt) saturated the wildfire literature since it
demonstrated high prediction and explanation accuracy than
other plant and animal species distribution methods. As fire
ignition distribution may be compared to species distribution,
some researchers applied MaxEnt to model human-related
drivers to wildfire occurrence.

Wildfire occurrence contain a temporal dimension which often
requires temporal perspective. However, these temporal
perspectives of anthropogenic drivers are frequently overlooked

and these drivers enter the modelling as structural “static”. For
instance the models developed by. This implies that they have
no temporal variation in its influence as fire-trigger factors as
explained by. By considering the temporal dimension of fire
occurrence and fire-trigger factors in their study, they found out
that modelling utilizing temporal scenarios enhances
understanding of anthropogenic drivers. Although previous
studies have created the models for predicting and explaining
the human-related drivers in wildfire occurrence, fewer studies
have focused on Afromontane grassland protected landscape or
taking into account the temporal dimension of these drivers.
This study using fire occurrence data spanning for 11-year
period (2007 to 2017) aim to create seasonal and day-type
models that consider temporal behaviour of anthropogenic
drivers over wildfire occurrence applying MaxEnt method to
explore the influence of anthropogenic drivers as a causal agent
of the fire ignition either by accident or negligence to each
model and how sensitive are these models are to the
anthropogenic drivers. Finally, determine the best temporal
model that can be used to facilitate the decision making on the
preparation of the fire prevention plan.

MATERIALS AND METHODS

Study Area

Golden Gate Highlands National Park (GGHNP), our study
area is a famous mountainous tourist destination in eastern Free
State Province of South Africa (Fig.1.) with the total area
coverage of 340km2. The park was established in 1963 to
protect a pristine area with much emphasis on conserving the
montane and Afro-Alpine grassland biome. GGHNP has a
rugged topography with the highest peak at 2797 meters (m)
above sea level. Climate is sub-tropical highland with dry winter
according to Kӧppen classification; mean annual temperature
ranging from 130C to 260C in summer. Mean annual rainfall
ranges from 1,800 mm to 2,000 mm with a period of water
deficit extending from June to August, and winter precipitation
in the form of snow. GGHNP is vulnerable to wildfires that
mainly occur between May and November which coincides with
the onset of dry season and ends at the beginning of rainy
season. The park has experienced area burnt in the past. For
instance, in the year 2000, 30704,22ha of burnt area with low to
high severity, 31352.13 in the year 2005, 4697 ha in 2013 and
30009.33 ha in 2017. The areas vulnerable to the greatest danger
include valleys and low lying plains towards the eastern portion
of the park.

Fire occurrence data

The dependent variable – wildfire occurrence was extracted
from Moderate Resolution Imaging Spectroradiometer
(MODIS) Collection 6 of NASA Fire Information for Resource
Management (FIRM). The dataset has limitations as it does not
distinguish between fire causes (either natural or human) and as
a result makes it difficult to analyze each explanatory variable in
its causality context. However, the MODIS active fire points
represent fire activities being recorded at given times and
locations that implies they contain information on both ignition
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and spread. The provisions of how the dataset is acquired and
algorithms used are available on Davies, Ilavajhala, Wong, and
Justice (2008) . The fire events of the 11 years spanning from
2007-2017 was selected for this study.

Figure 1. Location of the study area

Figure 2. Monthly and daily distribution of fire frequency (2007
-2017)

Independent variables

According to the basis of variable performances and their
relationship with wildfire ignitions, the distances to roads and
railways, and tourist sites are mostly considered as
anthropogenic drivers that possible cause of wildfire ignition by
accident or negligence. A vector road and infrastructure map
were obtained from South African National Parks (SANParks),
Scientific Service Department. Multi-ring Buffer maps were
generated for these two layers (100m, 200m, 300m, 400m,
500m). Variables were spatialized in ASCII raster format with
spatial resolution of 30m x 30m using ArcMap Software.

Modelling approach

Firstly, we created temporal scenarios. Figure 2 illustrates the
uneven temporal distribution of wildfire at both monthly and
daily scale for the period of 11-year (2007 -2017). The monthly
distribution shows bimodal pattern with peaks in August and
September, which is conditioned by seasonality of human
behaviour and weather conditions as described by Martín, et al.
(2019). Similarly, the daily distribution is biased towards
weekends showing a variation in the temporal pattern of wildfire
activity. Based on the preliminary evidence of this temporal
variation of fire activity, four (4) scenarios were created as
described in Table 1. Seasonal models were defined, Winter

(June, July, August) and Spring (September, October, and
November). In addition, days of the week were separated from
weekdays (Monday to Friday) and weekend (Saturday to Friday).

Maximum Entropy (MaxEnt), a machine learning method was
applied for modeling the anthropogenic factors for fire ignition
in this study. MaxEnt is described as estimating a distribution
across geographic space and was originally developed to be used
for species distribution and environmental niche. The method
has been extensively used for fire modeling studies. MaxEnt
iteratively contrasts environmental layers (anthropogenic
predictor values) at occurrence location (fire ignition points)
with those large backgrounds sample of random locations taken
across the study area. Data for running MaxEnt software, sample
data (fire occurrence data) and environmental predictors (road
and tourist’s facilities _ infra) were prepared guided by the
approach applied by Brown (2014) using ArcMap. A standalone
MaxEnt Species Distribution Modeling Version 3.4.1. software
version was chosen and the following were checked before the
model runs: create a responsive curve, make pictures of
predictions and do jackknife to measure variables importance.

A jackknife test was used to investigate the importance of an
individual anthropogenic variable for MaxEnt predictions. The
area under the curve (AUC) of the receiver operating
characteristics (ROC) was used to measure each model ‘s
performance and validation. The ROC curve is a graphical
representation of the false-positive error (1-specificity, where
specificity is the proportion of incorrect prediction) versus the
true positive rate (also known as sensitivity or proportion of
correct prediction) for binary classifier system and different
values of the discrimination threshold. AUC is a threshold-
independent metric because it evaluates the performance of a
model at all possible threshold values by adding up the area
between the ROC and random performance line. AUC is valid
to estimate AUC values range from 0.5 to 1. Excellent model
performance is suggested by AUC values higher than 0.9, a
moderate good performance by values between 0.7 and 0,9, and
poor model performance by values from 0.5 to 0.7.

Name Description

1 Winter_W_Day Weekdays of Winter

2 Winter_W_End Weekend of Winter

3 Spring_W_Day Weekdays of Spring

4 Spring_W_End Weekend of Spring

Table 1: Temporal Scenario

RESULTS

Variable contributions to the models

The analysis of variable contributions as depicted in Fig.3
revealed that ROADS as the strongest variable in two (2) models.
The highest contribution variable in Spring_W_End with 97.9
%, Winter_W_Day with 83.4% and decrease to almost equal
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contribution with INFRA in Spring_W_Day with 51% for
ROADS and 49% for INFRA. However, in Winter_W_End the
importance of ROADS was weaker in favour of INFRA with
27.7% and 72.3% contribution to the model for ROADS and
INFRA respectively. According to the jackknife test of variable
importance, the anthropogenic variable that gains most was
ROAD during weekdays when it was omitted, which therefore
appeared to have more information that was not present in
INFRA (Fig 4). In contrast, INFRA performance a key role
during weekends in both Summer and Winter seasons.

Figure 3. Independent variable contributions to each model

Figure 4: Jackknife estimation of variables importance of four
models

The response curve of fire occurrence to the anthropogenic
variables classifies the quantitative relationship between logistic
probability and anthropogenic variables. Moreover, we can
deepen the niche of fire ignition by explaining the response of
each model to the distance of these variables. According to the
response curve as shown in Fig 5, which reveals that the
likelihood of fire ignition is higher at 100m from the distance to
the infrastructure during weekdays, 200m during weekends in
Winter. While in Spring models are at 200m and 400m during
weekdays and weekends respectively. Looking at the response
curve of winter models to ROAD, a higher likelihood of fire
ignition in relation to distance to the road is observed at 500m
and 200m during weekdays and weekends respectively. Both
Spring weekday and weekend models show the maximum

probability of likelihood of fire ignition is 300m from the
distance to the road.

Figure 5: Response curves showing the relationship between all
the models and anthropic drivers (ROADS & INFRA)

Model Performance

Figure 6 represents the ROC results with AUC values of the
models. According to AUC values, the highest prediction
capacity is reached in winter especially during the weekend
(0.977), followed by weekdays (0.929) and spring weekend with
0.896. While the lowest is found during spring weekday (0.641).
However, the overall performance of the models based on the
average performance is moderate good performance (0,861) as
the prescribe accuracy threshold proposed by Fawcett (2006).

Figure 6: The ROC curve and AUC values of all the models
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DISCUSSION
Our models can explore the influence of anthropogenic drivers
as the causal agent of wildfire ignition. The results of this study
confirm the dominance of ROADS as the key contributor to
wildfire ignition, which is in consistent with the findings of
earlier studies. Fire ignitions are more likely to occur close to
roads due to accident, negligence or arson since roads act as
conveyors for arsonists, careless drivers, and campers. ROADS is
consistently the highest contributor in all the models. However,
the contribution to temporal distribution is not similar in all
models, it was dominant in all models except Spring Weekend.
Similarly, as observed in Figure 5 the influence of ROADS is
highest during weekdays of both seasonal scenarios. This finding
disagrees with the common conclusion that ROADS contribute
more during weekends which can be attributed to the traffic
increase experience during weekends and holidays as people
tend to travel more frequently during these days especially in
natural or forest environment. The maximum importance of
ROADS during weekdays in the study area may be related to the
regional or public road (R712) passing through the park that
connects major towns within the district (Fig 1). Activities by
passers-by in such a road increase the probability of ignition.
INFRA (tourist’s facilities) finds its maximum contribution to
the models during Spring Weekends and has low overall
contribution along all models. Moreover, the influence of
INFRA was found to be strong in weekends day-type of both
seasonal scenarios. This coincides with the recreational activities
in the park and may be related to the favorable weather
conditions of Spring warming, conditions that promote fuel
dryness which leads to higher ignition probability.

Considering the sensitivity of models to the ROADS and
INFRA, as we observe in Fig 5 wildfire ignition patterns vary
with time and distance (space). This finding confirms the
novelty of the relationship between human activity and wildfire
occurrence is not linear. In Winter Weekend response to both
ROAD and INFRA, area between 100m and 200m have high
influence to fire ignition and likelihood decreases as the
distance increase. This might be explained by the reality that
most distant areas are highly rugged topography and not
accessible to humans. Similarly, in Spring Weekend higher
ignition probability is observed in distance to INFRA of 100m
to 200m. In Spring Weekday and Weekend wildfire is easily
ignited by the human in a medium distance from the ROAD of
300m and Spring Weekend to INFRA (400m). The explanation
might be illegal livestock shepherds’ and arsonists seek remote
areas to avoid capture. This finding shows how wildfire
prevention or mitigation measures should proceed. Attention
should be paid to areas directly adjacent to ROADS and INFRA
during weekends in Winter and Spring Weekdays to INFRA.
Distant zones should receive more attention during Spring
Weekend to INFRA.

Nonetheless the drawbacks of MODIS active fire product
including indistinguishable of its ignition sources, we use the
MODIS data rather than the historical fire records in this study.
Because of its accessibility, ability to assess the suitability of
model and explore the variation of spatio-temporal pattern in
the study area. Modelling human-caused ignitions probability by

means of temporal dimension enhance our understanding of
human activity to wildfire prevention. On average, the overall
performance of our models is satisfactory (0.861). Our model
outperform those other models based on intra-annual models.
For example,Arndt, et al. (2013) study in modelling human-
caused fire ignition for assessing fire danger in Austria the
models created using logistic regression method reported 60.5%
of model performance. Furthermore, the reported performance
of dynamic model proposed, the highest prediction model
process was 0.860 observed during summer months. It should
be noted that their research considered the temporal dimension
of human factors. The research was conducted in NE Spain
using MaxEnt and wildfire data (2008-2012), they constructed
eight fire occurrence data scenarios and assess their model
accuracy using a cross-validation k-fold procedure. The reported
performance of our models is clear low in Spring season
particularly during weekdays, this might the explained by fewer
fire occurrence experienced during this period. Our results have
demonstrated that Winter fire occurrence data is more suitable
for modelling and assessing the human-caused fire ignitions of
the study area.

CONCLUSION
In this study, we used fire ignition data from MODIS spanning
from 2007 to 2017 to construct four occurrence data scenarios.
Considering the temporal dimension in modelling human-
caused fire ignition is a foundation for efforts towards creation
reliable and accurate predictions and explanation models.
Application of MaxEnt method provided us with the
mechanism for evaluating the performance of different temporal
scenarios and the importance of the explanatory variables to the
models. MaxEnt provided optimal opportunity to reflect distinct
temporal distribution in different explanatory variables.
Categorical MaxEnt proved to be a useful approach as it avoids
problems of dealing with false, unreliable and pseudo-absences
and it is relatively straightforward to implement and interpret.
The study shows extend knowledge about the influence and the
temporal patterns of human-caused fire ignition, which can aide
the Park managers in developing sound fire prevention
strategies, advising practical wildfire management and better
allocation of the limited resources. Regardless of the overall
performance of the model is satisfactory, improvement of the
models would be achieved by introduction precise fire ignition
or occurrence data that can identify source of ignition type, with
lower omission error. Furthermore, the improvement of the
model might achieve by parsing the explanatory variables, for
instance, distance to main road, secondary road, hiking trails,
distance to hotels, campsite).
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