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Introduction
Saccharomyces cerevisiae is the most useful yeast for humans, and 

since ancient times it has been widely used in winemaking, baking, and 
brewing. Over the past two decades, efforts have been made to reduce 
alcohol levels in wines through rational and evolutionary engineering of 
S. cerevisiae in order to maintain consumer health, prevention policies, 
the effectiveness of the fermentation and wine sensorial quality [1]. On 
the other hand, genetic engineering has provided non-conventional
yeast species with unusual tolerance in order to produce high yields
of liquid fuels and commodity chemicals from lignocellulosic biomass
[2,3]. As a unicellular eukaryotic model, S. cerevisiae is one of the most 
intensively studied organisms in molecular and cell biology [4], and
generates major breakthroughs in understanding of the mechanisms
of cellular and molecular processes [5-7]. Although it has been used
in fundamental and applied researches for long times, the interests
in S. cerevisiae do not decrease but increase recently. For example,
S. cerevisiae is used as a model to study Alzheimer’s Disease [8],
Parkinson’s disease [9] and mitochondrial diseases [10].

Cell-free protein synthesis based on S. cerevisiae is a versatile 
technique to produce proteins on-demand [11]. As an important 
industrial workhorse in biotechnology, the production of proteins 
from S. cerevisiae has been accelerated by the upcoming demand for 
sustainable processes and renewable raw materials [12]. Some suitable 
expression systems were identified and optimized, and enhance the 
production of recombinant proteins for medical or industrial uses [13]. 
Consequently, it is important to facilitate purification process to obtain 
the recombinant proteins at desirable purity, whereas there are still 
significant challenges because many steps can influence purification, 
such as affinity chromatography, precipitation, protecting of recombinant 
proteins from degradation with stabilizer, centrifugation, etc. 

Nowadays, we are in the era of big-data and the question raised 
here is how to use available data to improve protein purification? 
This could possibly be resolved because many expressed and purified 
proteins are available from databank, so the success rate of purification 

can be studied through modeling. Because proteins are composed of 
amino acids, amino acid features should have certain relationships 
with protein purification. For many expressed proteins, their amino 
acid composition, primary structure, and sometimes 3-dimensional 
structure are clearly documented, which provide useful information 
to analyze the success rate of purification of proteins of interest. The 
predicted result from modeling will give researchers a concept on 
what a chance a protein of interest can be successfully purified before 
conducting the experiment. Such modeling analyses have been done in 
predicting crystallization propensity of different proteins [14-19] but 
yet been applied to purification of proteins. Thus, this study aimed at 
analyzing the purification success of S. cerevisiae protein by means of 
modeling.

Materials and Methods
Model output

The success rate of protein purification of S. cerevisiae is analyzed 
using the number of purified proteins versus that of expressed proteins. 
Before 2012, 870 proteins from S. cerevisiae were successfully purified 
among 1294 proteins that were successfully expressed [20]. The success 
rate of purified proteins in this regard constructs so-called yes-no 
event, i.e., 1 and 0 event mathematically. The purified proteins were 
classified as 1 while the expressed ones were classified as 0, which 
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Abstract
Saccharomyces cerevisiae is the most widely used yeast in research and industries, however the downstream 

processes for its protein production are costly. This study attempted to find out a simple way to predict the success 
rate of protein purification with amino acid features. Logistic regression and neural network model were used to 
test each of 535 amino acid features one by one against the purification state of 1294 expressed proteins from S. 
cerevisiae, of which 870 were purified. The results show that the predictive performance of neural network is more 
powerful than that of logistic regression. Some amino acid features are useful to predict the purification tendency of 
proteins, and the varying amino acid features perform better as demonstrated by very high sensitivity accompanied 
with low specificity. Moreover, the S. cerevisiae proteins with a high predictable portion of amino acid pairs have 
higher accuracy of purification prediction than those with a low predictable portion. Thus, the success rate of 
purification of S. cerevisiae proteins can be predicted using neural network based on protein sequence information. 
This simple prediction process can provide a concept about the probability of a protein is purified, which should be 
helpful to overcome blindfold experiments and enhance the production of designed proteins.
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showed at columns 7 and 8 in Table 1. (4) The distribution probability 
of amino acids, which was computed according to the equation: 
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where ! is the factorial, r is the number of a type of amino acid, q is 
the number of partitions with the same number of amino acids and n 
is the number of partitions in the protein for a type of amino acid [27] 
with web computation http://www.nerc-nfb.ac.cn/calculation/dp.htm.

The last varying feature is the amino acid pair predictability 
[25,26]. Because an amino acid for constructing an amino acid 
pair is independent of other amino acids, probabilistic principle 
of multiplication can be applied to computing the predictability of 
amino acid pairs in a protein. Let the protein P38765 as an example, 
it has 294 amino acids, among them there are 28 alanines (A) and 21 
threonines (T). According to the permutation, the amino acid pair AT 
would appear twice in this protein, 28 21 293 2

294 293
× × = . In realty this 

protein does have two ATs, so the amino acid pair AT is predictable. 
Again according to the permutation, the amino acid pair TT would 
appear once, 28 21 293 2

294 293
× × = . However it appears 4 times in this 

protein, so the amino acid pair TT is unpredictable. By this way, all 
amino acid pairs can be classified as predictable or unpredictable, and 
their sums constitute the predictable and unpredictable portions of a 
protein. For this protein, its predictable and unpredictable portions are 
55.25% and 44.75%. This feature is generally different from protein to 
protein, which can be computed at the web http://www.nerc-nfb.ac.cn/
calculation/pp.htm, and was used to analyze the relationship with 
protein purification.

Modeling

It is necessary to compare the relationship between each constant 

severed as model output for the prediction and their details were listed 
in Table S1 of Supplementary Information.

Model inputs

Constant features: Currently, 544 amino acid features are 
documented in AA-Index [21], and each feature contains 20 constant 
values for 20 types of amino acids. For example, a physicochemical 
feature of amino acid (FAUJ880108) describes the localized electrical 
effect [22]. Actually, not every feature has 20 values, so 531 features 
were used as model inputs one-by-one, including 40 composition 
features, 218 physicochemical features, and 273 features related 
to second structure (Table S2 of Supplementary Information). An 
important point is that these 531 amino acid features are constant 
values regardless amino acid’s position, neighbor, etc. Table 1 showed 
how the model inputs were different between two S. cerevisiae proteins 
(accession numbers in UniProtKB P38765 and Q12380) as an example. 
They have the same length of 294 amino acids but their amino acid 
compositions are different (columns 2 and 3 in Table 1). When using 
the amino acid feature FAUJ880108 as inputs, its values were constant 
(column 4) regardless the difference between two proteins. In order to 
overcome this limit, these values could be weighted by the composition 
of amino acids (columns 5 and 6), by which the constant features are 
subject to the amino acid compositions.

Varying features: Four varying features of amino acids were used 
in this study and listed in the last 4 rows of Table S2. (1) The number of 
amino acids, which is a basic and simple varying feature for a protein 
as shown at columns 2 and 3 in Table 1. (2) The current composition 
of amino acids, which is the percentage of certain type of amino acids 
divided by total number of amino acids in a protein as shown at columns 
2 and 3 in Table 1. (3) The future composition of amino acids, which 
was computed according to the mutating probability listed in Table S3 
of Supplementary Information [23-26] with web computation http://
www.nerc-nfb.ac.cn/calculation/fc.htm and the two examples were 

Amino acid
No. FAUJ880108 FAUJ880108 ´ No. CC, % FC, % DP

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2
A 28 8 -0.01 -0.01 -0.28 -0.08 9.52 2.72 7.65 5.24 0.0115 0.17
R 6 12 0.04 0.04 0.24 0.48 2.04 4.08 6.03 7.64 0.0386 0.02
N 15 15 0.06 0.06 0.9 0.9 5.1 5.1 4.62 4.45 0.0374 0.16
D 12 15 0.15 0.15 1.8 2.25 4.08 5.1 4.57 3.36 0.0399 0.16
C 4 3 0.12 0.12 0.48 0.36 1.36 1.02 2.09 2.82 0.5625 0.22
E 24 13 0.05 0.05 1.2 0.65 8.16 4.42 4.16 3.48 0.0259 0.02
Q 7 9 0.07 0.07 0.49 0.63 2.38 3.06 3.1 2.75 0.2142 0.2
G 16 16 0 0 0 0 5.44 5.44 5.58 5.08 0.0568 0.06
H 5 5 0.08 0.08 0.4 0.4 1.7 1.7 2.76 3.09 0.384 0.38
I 24 30 -0.01 -0.01 -0.24 -0.3 8.16 10.2 6.23 6.91 0.0623 0.04
L 21 28 -0.01 -0.01 -0.21 -0.28 7.14 9.52 8.53 10.5 0.0707 0.01
K 24 19 0 0 0 0 8.16 6.46 4.29 3.84 0.0714 0.04
M 8 8 0.04 0.04 0.32 0.32 2.72 2.72 2.03 2.25 0.2243 0.07
F 16 18 0.03 0.03 0.48 0.54 5.44 6.12 3.09 3.57 0.0795 0.01
P 16 17 0 0 0 0 5.44 5.78 5.23 5.11 0.0715 0.07
S 17 28 0.11 0.11 1.87 3.08 5.78 9.52 7.68 8.28 0.0549 0.01
T 21 17 0.04 0.04 0.84 0.68 7.14 5.78 7.45 6.8 0.0371 0.02
W 2 8 0 0 0 0 0.68 2.72 0.62 0.77 0.5 0.25
Y 10 7 0.03 0.03 0.3 0.21 3.4 2.38 2.56 2.73 0.0714 0.02
V 18 18 0.01 0.01 0.18 0.18 6.12 6.12 7.67 7.18 0.0748 0.12

FAUJ880108 is a physicochemical feature of amino acids that describes the localized electrical effect [22]. P1 and P2 are two proteins with accession number YSG-
YHR029c and YSG-YPL149w. No., Number of amino acids; CC, %, the current composition of amino acids calculated by the number of a type of amino acids divided 
by the total number of amino acids in a protein; FC, %, the future composition of amino acids calculated according to the mutating probability (http://www.nerc-nfb.ac.cn/
calculation/fc.htm); DP, the distribution probability of amino acids can be calculated at http://www.nerc-nfb.ac.cn/calculation/dp.htm.

Table 1: Comparison of constant and dynamic amino acid features in two proteins.
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or varying feature of amino acids (model inputs) and the purification 
state (model output) [14-19] in order to find out which feature can give 
the best prediction. This was modeled using MatLab with both logistic 
regression and 10-1 feed-forward back-propagation neural network 
[28,29].

Statistics

The results were classified into true positive, false positive, true 
negative and false negative. The accuracy, sensitivity and specificity 
were calculated as follows:

(True positive + True negative)Accuracy 100
(True positive + False positive + True negative + False negative)

= ×

True positiveSensitivity = 100
True positive + False negative

×

(True negative)Specificity 100
(True negative + False positive)

= ×

The data were presented as median with inter-quatile, and were 
analyzed by Chi-square test. Kruskal-Wallis one way ANOVA on ranks 
and Mann-Whitney rank sum test were used to analyze the difference 
among and between different predictions. The receiver operating 
characteristic (ROC) analysis was used to compare the sensitivity and 
specificity [30-32]. P < 0.05 was considered statistically significant.

Results
Figure 1 is the heat map of the results using logistic regression to 

model the relationship between the success rate of purification of S. 
cerevisiae proteins and each of 535 amino acid features. In this figure, 
the y-axis indicated each of 535 amino acid features used as a predictor, 
and the x-axis indicated the accuracy, sensitivity and specificity of 
prediction results. Two characters can be drawn from Figure 1: 

Figure 1: Heat map of accuracy, sensitivity and specificity obtained from modeling 
the relationship between the success rate of purification of S. cerevisiae proteins 
and each of 535 amino acid features using logistic regression.

Amino acid feature Logistic regression Number Accuracy Sensitivity Specificity

Constant composition features 40 0.735 (0.735 - 0.735)
[0.713 - 0.735]

0.929 (0.929 - 0.929)
[0.913 - 0.929]

0.337 (0.337 - 0.337)
[0.304 - 0.337]

Physicochemical features 218 0.735 (0.735 - 0.735)
[0.664 - 0.741]

0.929 (0.929 - 0.929)
[0.919 - 0.949]

0.337 (0.337 - 0.337)
[0.0873 - 0.342]

Second structure features 273 0.735 (0.735 - 0.735)
[0.697 - 0.741]

0.929 (0.929 - 0.929)
[0.922 - 0.938]

0.337 (0.337 - 0.337)
[0.205 - 0.354]

Dynamic features
Modeling 4 0.676 (0.668 - 0.708) a,d

[0.666 - 0.735]
0.93 (0.905 - 0.934)

[0.882 - 0.936]
0.198 (0.124 - 0.303) d,f

[0.12 - 0.337]

Constant composition features 40 0.696 (0.679 - 0.704)
[0.672 - 0.782]

0.967 (0.952 - 0.985)
[0.896 - 1]

0.142 (0.0455 - 0.198)
[0 - 0.484]

Physicochemical features 218 0.724 (0.672 - 0.773) a
[0.672 - 0.781]

0.932 (0.927 - 0.997) a
[0.865 - 1]

0.359 (0.012 - 0.456)
[0 - 0.486]

Second structure features 273 0.77 (0.764 - 0.774) a,d
[0.672 - 0.781]

0.925 (0.919 - 0.93) c,e
[0.879 - 1]

0.458 (0.444 - 0.466) c,e
[0 - 0.498]

Dynamic features 4 0.764 (0.723 - 0.78)
[0.692 - 0.785]

0.919 (0.909 - 0.936) b,d
[0.905 - 0.948]

0.447 (0.297 - 0.504) a
[0.168 - 0.539]

Validation
Constant composition features 40 0.687 (0.676 - 0.691)

[0.672 - 0.727]
0.954 (0.938 - 0.984)

[0.867 - 1]
0.138 (0.0435 - 0.18)

[0 - 0.393]

Physicochemical features 218 0.698 (0.673 - 0.724) a
[0.671 - 0.731]

0.899 (0.888 - 0.997) a
[0.852 - 1]

0.308 (0.0059 - 0.387) a
[0 - 0.397]

Second structure features 273 0.722 (0.718 - 0.725) c,e
[0.672 - 0.73]

0.886 (0.884 - 0.893) c,e
[0.86 - 1]

0.388 (0.384 - 0.391) c,e
[0 - 0.397]

Dynamic features 4 0.689 (0.676 - 0.71) f
[0.671 - 0.723]

0.875 (0.842 - 0.912) b,d
[0.818 - 0.94]

0.357 (0.249 - 0.38)
[0.151 - 0.39]

The data are presented as median with inter-quatile in parentheses and range in brackets. The letters of a, b and c indicate statistical significance at P<0.05, P<0.01 
and P<0.001 levels, respectively, compared with constant composition features (Mann-Whitney Rank Sum Test). The letters of d and e indicate statistical significance 
at P<0.05 and P<0.001 levels compared with physicochemical features (Mann-Whitney Rank Sum Test). The letter f indicates statistical significance at P<0.05 level 
compared with second structure features (Mann-Whitney Rank Sum Test).

Table 2:  Results obtained from logistic regression, modeling and delete-1 jack-knife validation by means of 10-1 feed-forward back-propagation neural network. 
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(1) The prediction provides very high sensitivity with relative low 
specificity; 

(2) Different amino acid features give similar results (rows 3-6 in 
Table 2) and especially most of constant amino acid features provide 
the same prediction results indicated by the same color. 

These two characters reveal obvious in Table 2 that lists the statistic 
results of predictive performance grouped by the model inputs and the 
amino acid features.

Figure 2 is the heat map of the results using 10-1 feedforward 
backpropagation neural network to model the relationship between 
the success rate of purification of S. cerevisiae proteins and each of 
535 amino acid features (left 3 columns), and to valid this relationship 
with delete-1 jackknife validation (right 3 columns). Compared with 
logistic regression, neural network significantly enhances the ability 
of screening of model inputs because different amino acid features 
generate different prediction results as seen different colors in Figure 
2 and numerical comparison in both modeling (rows 8-11 in Table 2) 
and validation (rows 13-16 in Table 2). 

Figure 3 displays the ROC analysis with the aim to furthermore 
distinguish the performance of amino acid features as predictors in 
logistic regression (topper panel), in neural network modeling (middle 
panel) and delete-1 jackknife validation (bottom panel). Clearly, all 
predicted results were located in the up-left triangle, indicating that 
both models are effective to predict the success rate of purification 
of S. cerevisiae proteins because the predictions surpass a random 
guess, which is the diagonal line. Some amino acid features have 

better predictive performance with high sensitivity and relatively high 
specificity as marked in pink circle.

Figure 4 illustrates the predictive results in each S. cerevisiae protein 
by neural network. In this figure, the x-axis of upper and middle panels 
represents 1294 S. cerevisiae proteins, which are ranked according to 
their predictive accuracy. The upper panel represents the predictive 
accuracy obtained from modeling (green bars) while the middle panel 
represents the predictive accuracy obtained from delete-1 jackknife 
validation (light blue bars). In this way, S. cerevisiae proteins are divided 
into two groups by the cut-off point of 90% accuracy that is set as an 
acceptable accuracy. The lower panel of Figure 4 shows the statistical 
difference between the two groups in terms of predictable portion of S. 
cerevisiae portions. As can be seen, the larger the predictable portion is, 
the better the prediction is. 

Discussion
This study focuses on analyzing the success rate of purification of 

S. cerevisiae proteins through modeling for the purpose of finding out 
a simple way to predict the purification state of a protein. Both logistic 
regression and neural network can be used to model the relationship 
between an amino acid feature and the purification state. However, 

Figure 2: Heat map of accuracy, sensitivity and specificity obtained from 
modeling the relationship between the success rate of purification of S. cerevisiae 
proteins and each of 535 amino acid features using 10-1 neural network, and 
from validating this relationship with delete-1 jack-knife validation.

Figure 3: ROC analysis for sensitivity and specificity obtained from modeling the 
relationship between the success rate of purification of S. cerevisiae proteins and 
each of 535 amino acid features. The diagonal line is the line of indiscrimination 
indicating a completely random guess.
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the results demonstrate that logistic regression is weak in screening 
of different inputs whereas neural network reveals more powerful to 
distinguish the predictive performance of different amino acid features. 
This is consistent with previous studies for predicting crystallization 
propensity of proteins [14-19]. The results confirm that some amino 
acid features can serve as predictors to predict the success rate of protein 
purification. The predicted performance for S. cerevisiae proteins shows 
a very high sensitivity accompanied by a relatively low specificity, 
thus searching a suitable predictor should be focus on the outcome of 
specificity. Accordingly, the varying features are considered to be best 
predictors because 3 out of 4 of them provide better results as indicated 
in the pink circles in Figure 3. Three varying features are used in this 
study: future composition of amino acids, distribution probability of 
amino acids and amino acid pare predictability. These features are 
varying in different proteins with different amino acid composition, 
position and neighboring amino acid, and reveal their benefit for 
analyzing protein structure and function in many ways [25,26].

Purification is one of the most significant cost steps for producing 
recombinant proteins. Many efforts have been made to improve 
purification process in order to produce proteins more efficiently 
[33]. Some methods have been established for predicting multi-step 
experimental procedures of protein production including purification. 
For example, PredPPCrys is a new approach using the support vector 
machine and a comprehensive set of multifaceted sequence-derived 
features in combination with a novel multi-step feature selection 
strategy [34]. In comparison, this study shows a very simple method 
to predict the success rate of protein purification based on its sequence 
information, which can give researchers a concept what a chance a 
protein would be purified before conducting experiment. Interestingly, 
the simplest varying feature such as the amino acid composition of a 
protein can be used to predict the success rate of protein purification. 

In this way, the predictive process is quite simple so that one can easily 
have a concept about the probability a protein to be purified, which 
should be helpful to overcome blindfold experiments and enhance the 
production of designed proteins.

Conclusion
This study analyzes the relationship between the success rate 

of purification of S. cerevisiae proteins and each of 535 amino acid 
features through modeling. The results demonstrate that the predicted 
performance of neural network is more powerful than that of logistic 
regression. Some amino acid features can be used as predictor to 
predict the purification tendency of proteins, and among them the 
variable amino acid features show better predictive outcomes. In 
general, the sensitivity is very high while the specificity is low. Also, the 
S. cerevisiae proteins with high predictable portion of amino acid pairs 
will have higher accuracy of purification prediction than those with low 
predictable portion.

Supplementary Information
Table S1. List of 1294 proteins from S. cerevisiae used in this study.

Table S2. List of 535 features of amino acids used in this study.

Table S3. Amino acids and their translated amino acids with 
translation probability.
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