
ABSTRACT
Background: As the malignant tumor with the highest incidence in the world, Breast Cancer (BC) is the number one 
killer of women's healthy life. Recently, tumor metabolic reprogramming has attracted extensive attention, and 
mitochondria play a vital role in this process as a metabolic hub. In this study, we developed a risk signature of 
Mitochondrial-Associated Genes (MRGs) and evaluated its ability to predict prognosis and risk stratification in BC 
patients.
Methods: The transcriptomic data and clinical features of BC samples were extracted from TCGA and 
METABRIC. We constructed an 8 MRG signature by LASSO combined with Cox regression and assessed the 
performance by ROC curve. Subsequently, we combined the risk scores based on the signature with clinical 
features to construct a nomogram model and evaluated its accuracy by clinical calibration curve and decision 
curve analysis. Functional enrichments and immune-related analyses were performed to compare the different status 
between high and low-risk groups. Finally, we compared the mutation landscape and drug sensitivity to explore the 
treatment response. 
Results: A total of 8 MRGs (ACSL1, ALDH2, MTHFD2, MRPL13, TP53AIP1, SLC1A1, ME3 and BCL2A1) was 
constructed. This signature was an independent risk predictor for the survival of BC patients with a high hazard ratio 
(HR=3.028 95% CI 2.038-4.499). The low-risk group has a better prognosis, enhanced immune 
infiltration, significantly different mutation landscapes, and a more sensitive response to antitumor drugs, while 
the high-risk showed the opposite trend.
Conclusion: The MRG signature is a novel prognostic risk signature that can be used as a predictor for patient 
stratification in BC.
Keywords: Breast cancer; Mitochondria; Risk signature; Prognosis

INTRODUCTION
According to the latest statistics of GLOBOCAN 2020, 2.26
million new cases of female BC have been detected annually
worldwide, which has overtaken lung cancer and ranks first
among all malignant tumors regardless of sex [1]. At present, due
to the development of imaging screening combined with surgical
methods, advances in radiotherapy, and progress in therapeutic
drugs, the prognosis of BC patients has been greatly improved
[2-4]. Despite the systematic and abundant treatment options, it
is necessary to adopt a tailored approach to elicit the best
response due to the high heterogeneity of BC [5]. With the
development of microarray and next-generation sequencing

technology, polygenic testing can help clinicians in practice by
providing auxiliary clinical features [6]. From PAM50 used for
molecular typing of BC [7] to the 21-gene (Oncotype DX Breast
Recurrence Score®) [8] and MammaPrint™ 70-gene signature
[9] used to assess the clinical risk of BC patients, polygenic
testing has gradually occupied an important position in guiding
treatment.

As a central metabolic organelle, the mitochondrion performs
critical functions for fatty acid, amino acid, and nucleotide
metabolism in the development and progression of cancer [10].
At present, the fundamental effects of mitochondrial
metabolism on steps of tumorigenesis, that is, malignant
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mitochondrial metabolic targets of BC and lay a foundation for 
accurate immunotherapy targeting the mitochondrial metabolic 
pathway of BC.

MATERIALS AND METHODS

Datasets and collection of mitochondria-related
genes

The transcriptomic and corresponding survival data of TCGA 
samples were downloaded from the UCSC Xena database. The 
mutation and clinical features of BC were downloaded from 
TCGA by the “TCGAbiolinks” package. After removing the 
cases with missing data and male patients, we used TCGA 
sample barcodes to divide the cases into primary tumor (1036 
cases) and normal tissues (99 cases). For verification, we also 
downloaded RNA-seq data from BC patients from the 
METABRIC database. After screening the cases, a total of 1903 
patients were included in the analysis. By searching Molecular 
Signature Database v7.5 (MSigDB), we downloaded a MRG 
dataset (M9577) consisting of 450 genes. After integration with 
TCGA and METABRIC databases, a total of 418 MRGs were 
included in the subsequent analysis. Relevant grouping 
information and clinicopathological features were shown in 
Table 1.

Characteristic TCGA (n=1036) METABRIC (n=1903)

Age (mean (SD)) 58.05 (12.93) 61.09 (12.98)

Status (%)

Alive 888 (85.7) 801 (42.1)

Dead 148 (14.3) 1102 (57.9)

PT (%) Tumor size (%)

T1 269 (26.0) ≤ 2 cm 820 (43.5)

T2 600 (7.9) >2 cm and ≤ 5cm 968 (51.4)

T3 127 (12.3) > 5 cm 95 (5.0)

T4 37 (3.6)

Tx 3 (0.3)

PN (%) Positive nodes (%)

N0 485 (46.8) 0 nodes 992 (52.1)

N1 345 (33.3) 1~3 nodes 604 (31.7)

N2 117 (11.3) 4~9 nodes 204 (10.7)
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transformation, tumor progression, and therapeutic response, 
have finally been properly recognized [11,12]. Meanwhile, a 
variety of preparations specifically acting on mitochondria were 
developed according to the difference between cancer and normal 
cells [13,14]. In BC, targeting mitochondrial metabolism can 
provide a new vision for some subtypes with limited treatment 
options, such as Triple-Negative Breast Cancer (TNBC) [15,16]. 
Jiyoung Lee, et al., demonstrated that mitochondrial metabolism 
can be exploited to sensitize BC and potentially other tumor 
tissues to mitochondrial inhibitors [17]. In addition, Jui-Chih 
Chang, et al., revealed the antitumor potential of mitochondrial 
transplantation in BC cells via distinct regulation of 
mitochondrial function [18]. In other aspects, mitochondria are 
essential for the metabolism and activation of immune and 
cancer cells [19]. Furthermore, mitochondrial acquisition and 
increased oxidative phosphorylation have been proven to be 
involved in cancer progression and the development of 
chemotherapy resistance [20].

Given the existing findings, we constructed an 8 MRG signature 
by exploring BC samples in TCGA training cohort. ROC, 
Kaplan–Meier (K-M) survival analyses, nomogram model, 
Decision Curve Analysis (DCA) and calibration curve were used 
to assess the prediction ability and clinical application of the risk 
signature. The results indicate that our signature can effectively 
stratify risk populations and the 8 MRGs can serve as potential 
independent predictor in clinical application. Conclusively, our 
findings may provide new clues for the study of the

J Proteomics Bioinform, Vol.18 Iss.2 No:1000690 2

Table 1: Clinicopathological characteristics of the BC cases in TCGA and MERABRIC datasets.



N3 72 (6.9) ≥ 10 nodes 103 (5.4)

Nx 17 (1.6)

PM (%)

M0 861 (83.1)

M1 27 (2.6)

Mx 148 (14.3)

Stage (%) Stage (%)

Stage I 173 (16.8) Stage I 474 (33.8)

Stage II 589 (57.1) Stage II 800 (57.1)

Stage III 238 (23.1) Stage III 115 (8.2)

Stage IV 19 (1.8) Stage IV 9 (0.6)

Stage X 12 (1.2) Stage 0 4 (0.3)

Subtype (%)

BRCA_LumA 484 (46.7) BRCA_LumA 678 (35.6)

BRCA_LumB 187 (18.1) BRCA_LumB 461 (24.2)

BRCA_Her2 72 (6.9) BRCA_Her2 220 (11.6)

BRCA_Basal 165 (15.9) BRCA_Basal 199 (10.5)

Unknown 128 (12.4) Unknown 146 (7.7)

Claudin-low 199 (10.5)

Note: The TCGA cohort was used as training cohort and MERABRIC cohort as the validation cohort.

discriminatory power, we calculated the Concordance index (C-
index) and plotted DCA and calibration curves.

Differential gene and functional enrichment
analyses between risk groups

To explore the causes underlying different prognosis, we
performed differential gene and functional enrichment analyses
between risk groups. Gene Ontology (GO) analysis was
conducted to identify GO categories by their Biological Process
(BP), Molecular Functions (MF), and Cellular Components
(CC). Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis was used to explore the influenced pathways among the
risk groups. Gene Set Enrichment Analysis (GSEA) was
performed to discover enriched gene sets between risk groups.

Immune related analyses

The estimation of stromal and immune cells in malignant tumor
tissues using expression (ESTIMATE) data algorithm can infer

Wang Y, et al.

Construction and clinical application of the risk
signature

After differential gene analysis between tumor tissue and normal 
tissue with the “DESeq2” package (log2Fold Change >1, 
adjusted P value<0.05), a total of 64 Differentially Expressed 
Genes (DEGs) were screened out (39 upregulated and 25 
downregulated). By performing univariate Cox regression After 
LASSO variable screening, an 8-MRG signature was established. 
The risk formula was as follows:

All patients were divided into high and low-risk groups based on 
the median riskScore. K-M plots was used for survival analysis. 
The predictive power of the riskScore was evaluated by ROC, 
time-dependent ROC, and Area Under the Curve (AUC).

In clinical application, the correlation between risk groups and 
clinical features was demonstrated by the “ggpubr” package. A 
nomogram model was constructed according to the Cox 
regression analyses. To assess the model’s predictive
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RESULTS

Preliminary screening of prognosis-related
mitochondrial genes

The overall analysis process of this study is shown in Figure 1. A
total of 418 MRGs were included for differential expression
analysis. DEGs were defined as |log2FC|>1 with P value<0.05,
and 64 Deferentially Expressed MRGs (DE-MRGs) were
screened out. The distribution of all DE-MRGs is displayed in a
heat map. After sorting by the P value of DE-MRGs, the top 5
genes in the up- and down regulated groups were selected to
draw a volcano map. The 64 DE-MRGs were then subjected to
univariate Cox regression in BC patients, and 9 significant OS-
related genes were detected (P<0.05) and presented in a forest
plot (Figure 2).

Schematic flowchart of the workflow performed to build and
validate the breast cancer prognostic risk signature. Some typical
analysis results were shown in reduced size (normal-sized
pictures are shown later).

Figure 1: The overall analysis workflow of this study.
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the content of tumor cells as well as differentially infiltrating 
normal cells based on the unique nature of the transcriptional 
profile of cancer samples. By calculating the expression levels of 
the stromal signature and immune signature in BC patients, the 
related score of corresponding patients can be obtained. 
CIBERSORT was used to predict the proportion of 22 types of 
Tumor-Infiltrating Immune Cells (TIICs) in each tissue. The 
cells correlated with riskScore were presented as scatter plots 
with a significance threshold for P<0.05. Vesteinn Thorsson, et 
al., classified TCGA BC samples into different subtypes based 
on immune-related gene expression. The composition of 
immune subtypes between risk groups was presented by column 
graphs, and their differences were detected by the chi-square test 
processed by the “ImmuneSubtypeClassifier” package. In 
addition, single-sample GSEA (ssGSEA) allowed us to define 
enrichment scores that predict the abundance of 28 Tumor-
Infiltrating Immune Cells (TIICs) in each sample based on a 
gene set of 782 genes.

Mutation landscape and Weighted Correlation
Network Analysis (WGCNA)

After matching with TCGA barcodes, the top 15 most 
frequently mutated genes in different risk groups were displayed 
by oncoplots. We further examined somatic interactions, 
performed survival analysis and calculated Tumor Mutational 
Burden (TMB) according to risk groups. The above analysis and 
visualization were processed by the “maftools” package. 
Furthermore, we screened out module genes that were most 
strongly correlated with immune infiltration and risk level by 
the “WGCNA” package.

Treatment response and drug sensitivity

The effect of treatment on prognosis between different risk 
groups was demonstrated by K-M plots. Drug sensitivity training 
set data were downloaded from Genomics of Drug Sensitivity in 
Cancer (GDSC). Combined with TCGA data, we screened out 
commonly used antitumor drugs for analysis and presented the 
results through radar plots by the “oncoPredict” and “ggpubr” 
packages.

Statistical analysis

All statistical analyses and visualizations were conducted with R 
software (version 4.2.0), and the image editing and combination 
were completed by Adobe Illustrator. Student’s t test was used 
for statistical comparisons. Differences in gene expression and 
immune infiltration scores were detected by the Wilcoxon test, 
and discrepancies in riskScore between various clinical features 
were tested by the Kruskal‒Wallis test. K-M curves involved in 
the survival analysis were tested by log-rank test. The correlation 
plots were displayed by Spearman’s correlation test. Statistical 
significance was determined as a P value<0.05.
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Note: (A) Differential distribution of MRGs between tumor and 
normal tissues in the TCGA cohort. (B) Volcano plot of the 
DEGs. (C) Univariate Cox regression identified MRGs 
significantly related to OS (P<0.05). (D) LASSO coefficient 
profile plots of the 8-MRG risk signature. (E) Penalty plot for the 
LASSO regression for the MRGs with error bars denoting the 
standard errors. MRG mitochondria-related genes, DEG 
differentially expressed gene, LASSO least absolute shrinkage 
and selection operator.

Construction of the risk gene signature by LASSO

9 OS-related DE-MRGs were included in the LASSO regression 
and finally 8 genes were constituted the MRG risk signature. 
The riskScore was calculated as follows:

riskScore=(0.153 × expr_ACSL1)+(0.022 ×
expr_ALDH2)+(0.029 × expr_MTHFD2)+(0.265 ×
expr_MRPL13)+(-0.417 × expr_TP53AIP1)+(-0.086 ×
expr_SLC1A1)+(-0.137 × expr_ME3)+(-0.302 × expr_BCL2A1). 

The descriptions of the 8 MRGs are given in Table 2.

Gene Full name Description

ACSL1 Acyl-CoA Synthetase long-chain family member
1

Exists at the outer mitochondrial membrane
and plays an important role in ferroptosis in
diverse cancer cell types.

ALDH2 Aldehyde dehydrogenase 2 Aldh2-deficient can activate a variety of
carcinogenic pathways and promote the
occurrence of hepatocellular carcinoma.

MTHFD2 Methylenetetrahydrofolate dehydrogenase 2          Regulates purine synthesis and signal
transduction in activated T cells to promote
proliferation and induces immune invasion of
cancer cells by upregulating PD-L1.

MRPL13 Mitochondrial ribosomal protein L13 Exists in the mitochondria of eukaryotic cells, a
poor prognostic factor for BC.

TP53AIP1 Tumor protein P53 regulated apoptosis 
inducing protein 1

TP53 target, plays a key role in inducing
apoptosis in response to UV-induced DNA
damage.

SLC1A1 Solute carrier family 1 member 1 An extracellular glutamine transporter,
promotes tumor growth through
reprogramming glutamine metabolism of
natural killer T-cell lymphoma, while rendering
tumor cells sensitive to asparaginase treatment.

ME3 Malic enzyme 3 Catalyzes oxidative decarboxylation of (S)-
malate to pyruvate and reverse the
decarboxylation reaction. Involved in the
carcinogenesis of pancreatic cancer.

Wang Y, et al.
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Table 2: Brief description of 8 MRGs.

Figure 2: Differential distribution of MRGs and profile plot 
of LASSO regression. 



BCL2A1 BCL2 related protein A1 Bcl-2 family member, regulates endogenous
apoptosis and target anti-apoptotic members.

Figure 3: MRG risk signature and clinical application. (A) 8 
MRGs and distribution heatmap of clinical features. (B-C) ROC 
and time-ROC analysis of the risk signature. (D-E) Univariate 
and multivariate Cox regression for the riskScore and 
corresponding clinical features. (F) 8 MRG expression levels 
between tumor and normal tissues. (The plot annotations were 
as follows: *if P<0.05, **if P<0.01, and ***if P<0.001 and ns if 
non-significant.)

Clinical translation of risk signature

The independent risk predictors (age, stage, risk score) were
selected to construct a nomogram model. In terms of evaluation,
the C-index was 0.763, and its standard error was 0.045. In
addition, compared with single predictors, the DCA curve
exhibited a higher net benefit based on the nomogram decision.
In the calibration curve, the nomogram also showed an accurate
ability to predict survival at 1 year, 3 years, and 5 years (Figure
4).

Wang Y, et al.

Evaluation and expression pattern of the risk
signature in the TCGA cohort

A heatmap was used to demonstrate the relationship between 
the 8 genes and clinical features after ranked the riskScore form 
low to high. The overall AUC was 0.647 (Figure 3B), while the 
predictive power of survival gradually increased over time, and 
the AUCs at 1 year, 3 years, 5 years, and 10 years were 0.58, 
0.65, 0.67 and 0.76, respectively.

Subsequently, age, PT, PN, AJCC stage, and riskScore were 
included in the univariate Cox regression analysis. The Hazard 
Ratios (HRs) and P values are shown in a forest map. The results 
showed that all variables had a significant impact on prognosis 
and the risk score ranked the top: Age (HR=1.035, 95% CI: 
1.021-1.049, P<0.001), PT (HR=1.559, 95% CI: 1.265-1.922, 
P<0.001), PN (HR=1.592, 95% CI: 1.338-1.894, P<0.001), stage 
(HR=2.192, 95% CI: 1.738-2.765, P<0.001) and risk score 
(HR=3.496, 95% CI: 2.364-5.171, P<0.001). Furthermore, the 
variables were incorporated into multivariate Cox regression. 
The results showed that age (HR=1.035, 95% CI: 1.021-1.049, 
P<0.001), stage (HR=1.863, 95% CI: 1.242-2.795, P=0.003), and 
risk score (HR=3.028, 95% CI: 2.038-4.499, P<0.001) were 
independent risk predictors for survival after adjusting for 
cofactors (Figure 3).

Among the 8 MRGs, 4 genes (ACSL1, ALDH2, TP53AIP1, and 
ME3) were downregulated in tumor tissues and upregulated in 
normal tissues, while another 4 genes (MTHFD2, MRPL13, 
SLC1A1, and BCL2A1) showed opposite trends (Figure 3). The 
boxplot was used to show the expression status of the MRGs 
between risk groups based on median risk score.
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Figure 4: Construction and evaluation of the risk signature 
based nomogram model. (A) Age, stage, and riskScore 
(independent risk factors) were enrolled in the nomogram, and 
the total score could be used as a tool to predict the 1, 5, and 
10-year prognosis of breast cancer patients. The orange dots and
arrows in the plot represent the clinical features of a patient and
the survival probability of the corresponding year. (B) DCA of
the nomogram and single variable. (C) Calibration curve of the
nomogram to predict survival at 1 year, 3 years, and 5 years. (D)
KM plot for the prognosis analysis between high and low-risk
patients. DCA decision curve analysis.

pathway analyses showed that the risk DEGs were mainly
associated with the regulation of T-cell activation, leukocyte-
mediated immunity, and the NF-kappa B signaling pathway
(Figure 5). Furthermore, GSEA table showed that the immune
response and positive regulation of immune system processes
were enriched in low-risk patients, while in high-risk patients,
neuron differentiation and development were ranked the top.

Figure 5: Functional enrichment analyses of the different risk
groups. (A-C) GO, KEGG, and GSEA analyses of the DEGs
between the high and low-risk groups. GO Gene Ontology,
KEGG Kyoto Encyclopedia of Genes and Genomes, GSEA
Gene set enrichment analysis.

Assessment of the ability of the risk signature to
distinguish different immune infiltrations

The ESTIMATE results showed that the low-risk patients
exhibited significantly higher ESTIMATE, immune, and stromal
scores and lower tumor purity (P<0.05, Figure 6). Subsequently,
tumor-infiltrating immune cells were analyzed by CIBERSORT,
and the cells significantly related to risk score were screened out
from 22 types of immune cells. Moreover, the BC samples in the
TCGA cohort were divided into 5 different immune subtypes:
C1 (Wound Healing, 32%), C2 (IFN-gamma Dominant 51%),
C3 (Inflammatory, 11%), C4 (Lymphocyte Depleted, 3%), and
C6 (TGF-beta Dominant, 3%). The proportion of C1 was lower
in the low-risk group, while the proportion of C3 and C6 was
higher. In contrast, a higher proportion of C1 and a lower
proportion of C3 and C6 were found in high-risk patients. In
addition, the ssGSEA results showed that there was a significant
difference in the enrichment of immune cells between the high-
risk and low-risk groups, except for neutrophils (Figure 6).

Wang Y, et al.

Validation and association of clinical features with
risk score in TCGA and METABRIC

The prognosis between different risk groups was shown by K-M 
curve. The low-risk group showed a significantly better prognosis 
(P<0.001, Figure 4). The survival status of TCGA BC patients 
was displayed by a scatter plot based on risk score ranging from 
low to high. Correlations between risk score and PT, PN, AJCC 
stage, and PAM50 subtype are illustrated by boxplots. In the 
METABRIC validation cohort, survival analysis was also 
presented by K-M curves and scatter plots. Instead of PT and PN 
stage, the corresponding factors in METABRIC were displayed 
by tumor size and number of positive lymph nodes. Therefore, 
relevant variables were included to demonstrate in the boxplot. 
In addition, according to the median gene expression, the effect 
of these 8 MRGs on OS was shown by the K-M curve. The 
results showed that 3 gene reached statistical significance, in 
which high ME3 and TP53AIP1 expression was associated with 
a significantly better prognosis (ME3: P=0.013, TP53AIP1: 
P<0.0001), while high MRPL13 expression got a significantly 
worse prognosis (P=0.0017).

Functional enrichment analyses

To explore the underlying reasons for the prognosis between 
high and low-risk patients, we processed differentially expressed 
genes between risk groups and performed functional 
enrichment analyses among these DEGs. GO and KEGG

J Proteomics Bioinform, Vol.18 Iss.2 No:1000690 7



Figure 6: Immune infiltration of the risk groups. (A) The 
ESTIMATE algorithm presented the immune infiltration scores 
across risk groups, including the ESTIMATE score, immune 
score, stromal score and tumor purity. (B) Immune subtype of 
TCGA breast cancer cases based on immune-related gene 
expression and the different subtype proportions in risk groups.
(C) ssGSEA demonstrated the abundance of 28 tumor-
infiltrating immune cells in individual tissue samples by a
heatmap ranked from the lowest to the highest risk score.
(The plot annotations were as follows: *if P<0.05, **if P<0.01,
and ***if P <0.001 and ns if nonsignificant) ESTIMATE
Estimation of Stromal and Immune cells in malignant tumor
tissues using expression.

Figure 7: Mutation landscape analysis between risk signatures.
(A-B) Oncoplots for the different mutation landscapes of risk
groups. (C-E and G-I) K-M curve for the most frequently affected
gene and combination of associated genes affecting prognosis in
the high- and low-risk groups. (F, J) The calculated TMB in high
and low-risk patients.

WGCNA of the risk DEGs

After WGCNA clustering, the overall situation between
individual cases and ESTIMATE, riskscore, and risk group was
shown by a sample dendrogram trait heatmap (Figure 8). Among
the 3 modules, the turquoise module was positively correlated
with the ESTIMATE, stromal, and immune scores but
negatively correlated with tumor purity, higher risk score and
high-risk group. The function of turquoise module was explored
by GO analysis.

Figure 8: WGCNA, treatment responses and drug sensitivity.
(A) Dendrogram trait heatmap for the overall situation between
individual cases after WGCNA clustering and ESTIMATE,
riskScore, and risk group. (B) Three color module genes
clustered by WGCNA and corresponding statistical correlation.
(C-E) KM plot for the prognostic analysis of patients with
chemotherapy, radiotherapy and endocrinotherapy among
different risk groups in the TCGA cohort. (F-G) Radar plots for
drug sensitivity between different risk groups among IC50<1 and
IC50>1.

Wang Y, et al.

Risk signature and prognosis of different gene
mutation landscapes

Patients in the risk groups were matched by sample barcodes, 
and the mutation landscape was displayed by oncoplots (Figure 
7). In the combination of PIK3CA-associated genes affecting 
prognosis, CDH1 and KMT2C were the top 2 genes ranked by P 
value. In survival analysis, PIK3CA gene mutation (HR=2.03, 
P=0.0975) and co-mutation with CDH1 (HR=8.86, P<0.001) 
and KMT2C (HR=5.3, P=0.0138) in high-risk patients showed 
poor prognosis. However, the same genes did not reach 
significant difference in the low-risk group. Furthermore, the 
tumor mutational burden was calculated, and the TMB was 
0.74/MB in high-risk patients and 0.58/MB in low-risk patients.
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results were also verified in the METABRIC validation cohort.

Among the 8 MRGs, three genes (ACSL1, MTHFD2 and 
MRPL13) were highly expressed in the high-risk group and 
tumor tissues. While TP53AIP1 and ME3 were highly expressed 
in the low-risk group and normal tissues. To be specific, the 
prognosis with high ME3 and TP53AIP1 was significantly better, 
while the prognosis with high MRPL13 was worse, it suggested 
that TP53AIP1 and ME3 may act as tumor suppressors and 
MRPL13 as an oncogene in BC. Similar to what we inferred, 
one study showed that TP53AIP1 has been proven to be a new 
tumor suppressor gene for BC and may become an effective 
target gene for therapy. Another study reported that high 
MRPL13 is a poor prognostic factor for BC, and it can be used 
as a molecular marker for prognosis judgment and as a potential 
therapeutic target. It is worth noting that MRGs are associated 
with the immune response and cell death, which also proves the 
reliability and potential to be used as biomarkers of our risk 
signature.

To explore the underlying reasons, we analyzed DEGs between 
risk groups and performed functional enrichment analyses. 
Most BP terms were related to the immune response, and 
KEGG analysis showed that Th17-cell differentiation, the NF-
kappa B signaling pathway and most terms were closely related 
to immune response and oncogenesis. Meanwhile, GSEA results 
also showed the up-regulation of several immune-related items 
in the low-risk group. These findings indicate that a low risk 
score may be accompanied by an abundant immune response. 
While in the high-risk group, the terms related to neuron 
differentiation ranked top, which may be related to the role of 
nerve growth factor in the proliferation, invasion and metastasis 
of BC cells, especially for TNBC.

The ESTIMATE algorithm can effectively evaluate the 
proportion of tumor, infiltrating immune, and stromal cells in 
the Tumor Microenvironment (TME). Similar to our findings, 
the low-risk patients exhibited higher scores of ESTIMATE, 
immune and stromal, while lower tumor purity, that is, 
presented a higher degree of immune infiltration and showed a 
“warmer” condition. Furthermore, CIBERSORT could evaluate 
the infiltration degree of 22 types of immune cells. Among 
them, the risk score was significantly negatively correlated with 
CD8 T cells, which are critical for tumor destruction, and the 
correlation coefficient was also the highest (R=-0.26, P<2.2e-10). 
Moreover, in M2 macrophages, which tend to promote 
angiogenesis and neovascularization, the risk score showed a 
significant positive correlation (R=0.19, P=2e-10). Notably, M2 
macrophages can cause stromal activation and remodeling, 
which are endowed with a repertoire of tumor-promoting 
capabilities involving immunosuppression and result in poor 
prognosis of BC patients. Meanwhile, the risk score showed a 
negative correlation with M1 macrophages, which could 
enhance antitumor inflammatory reactions and act as major 
players in proinflammatory responses.

Meanwhile, based on multiple control modalities of intracellular 
and extracellular networks, TCGA cohort was divided into 5 
subtypes (Figure 6B), in which C1 was higher in high-risk (38%
vs. 26%), and C3 was higher in low-risk (16% vs 7%). Among

Wang Y, et al.

Treatment response and drug sensitivity

After matching treatment information in TCGA and 
METABRIC, the results showed that the prognosis of high-
risk patients in the three treatments was significantly worse 
(Figure 8). By screening common therapeutic drugs in clinical 
practice, the sensitivity of risk groups to drugs was analyzed. 
The results showed that the high risk was accompanied by a 
higher IC50, which means less sensitivity to drugs.

DISCUSSION
Reprogramming of metabolism has received strongly increasing 
attention within the last decade, and several studies have shown 
that altered mitochondrial metabolism is considered to be one of 
the major emerging mechanisms of therapeutic resistance. The 
construction of multi-gene prognostic risk prediction models by 
bioinformatics algorithms can help us to further discover the role 
of multi-genes in the diagnosis and treatment of BC. At present, 
Luo, et al., used the gene set of mitochondrial GOBP term 
combined with OS analysis to construct a gene prediction model, 
and preliminarily explored its correlation with immune 
infiltration. We selected 450 mitochondrial gene sets containing 
“mitochondr_HG-U133A_probes” with the systematic named 
M9577 by searching MSigDB. In terms of strategy, we first 
performed differential analysis between cancer and normal 
tissues, and then combined with LASSO-Cox algorithm, we 
constructed a risk signature consisting of 8 MRGs (ACSL1, 
ALDH2, MTHFD2, MRPL13, TP53AIP1, SLC1A1, ME3, and 
BCL2A1). Subsequently, we fitted a nomogram model based on 
this signature to test its clinical translation ability, and verified its 
risk stratification ability by immune infiltration analysis, risk 
group differential analysis, and drug sensitivity analysis.

In clinical translation, the total AUC was 0.647, and we 
calculated the AUC for 1, 3, 5, and 10 years, and its trend was 
gradually strengthened (from 0.58 to 0.76), which means that 
this signature also has a certain accuracy in the long-term 
prognosis of BC (Figure 3B-C). Cox regression analysis 
combined risk score and clinical features showed that risk score 
was also an independent risk factor affecting prognosis, and the 
HR ranked first among all factors (Figure 3D-E).

Given the excellent predictive power of the risk score, we 
constructed a nomogram combining the results of multivariate 
cox regression. DCA is a method for evaluating nomograms that 
can meet the practical needs of clinical decision-making, and a 
calibration curve is another method to evaluate the consistency 
between the predicted and true values. The above methods 
proved the effectiveness of the nomogram model based on the 
risk signature. In addition, the prognosis of high-risk patients 
was significantly worse, and a higher risk score was positively 
correlated with more  aggressive clinical features. The  corresponding
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studies have validated the function of certain genes in our risk
signature, the function of other genes and the underlying
mechanism of these 8 MRGs need to be further investigated,
and we will conduct corresponding experimental studies in the
future.

CONCLUSION
In this study, we developed a novel 8-gene risk signature based
on mitochondrial-related genes. Several clinical evaluation
methods have confirmed the good prognostic accuracy of this
signature. Importantly, our signature can effectively distinguish
the risk populations among BC patients and has the potential to
be used as a biomarker for clinical translation.
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these subtypes, C1 (Wound Healing immune) has high 
expression of angiogenic genes and Th2 cells, which have high 
tumor cell proliferation and high intratumoral heterogeneity 
with a less favorable outcome. C3 (inflammatory), defined by 
elevated Th17 and Th1 genes, is associated with low to moderate 
tumor cell proliferation and minimal intratumoral 
heterogeneity, which has the best prognosis compared to other 
subtypes. Consistent with above, a low risk score was 
accompanied by increased immune cell infiltration, making the 
immune infiltration of low-risk patients look “warmer”. 
Therefore, it is reasonable to speculate that the risk signature 
can divide patients with different immune responses, and this 
heterogeneous status of tumor immunity may account for the 
difference in prognosis.

Moreover, we explored the mutational landscape between the 
risk groups. Among them, TP53 was the major mutation in 
high-risk patients (37%), and the incidence of PIK3CA mutation 
was dominant in low-risk patients (42%). TP53 mutation was 
associated with frequencies of mutations in TNBC and HER2-
positive subtypes of 80% and 70%, respectively, and in luminal 
A and B types of 10% and 30%, respectively. PIK3CA mutation 
has been widely recognized as a genomic marker of BC, and 
PIK3CA mutation rates were lower in TNBC (16%) than in HR
+/HER2-(42%) and HER2+(31%) BC. These findings partly 
explained the variation in riskScore among molecular subtypes. 
In addition, the same gene mutation status had a significantly 
worse prognosis in high-risk patients, which may be related to 
the overall worse prognosis of these patients. However, the 
higher TMB in high-risk patients may be due to the more TP53 
mutations and the higher proportion of TNBC.

After WGCNA, it was found that the turquoise module gene 
trend was the most consistent with our speculation. GO analysis 
of the turquoise module genes also revealed that immune 
regulation may account for the differences. Moreover, the high-
risk cohort had a worse prognosis in three treatments regardless 
of TCGA or METABRIC cohort, which also reflected the ability 
of our signature to screen for treatment response. The drug 
sensitivity analysis found that the low-risk group was more 
sensitive to drugs (such as paclitaxel, Docetaxel, Epirubicin and 
other commonly used chemotherapy regimens for BC), which 
may also account for the difference in the prognosis of 
chemotherapy patients.

In this work, we established an 8-MRG-based risk signature for 
BC prediction through joint analysis of gene expression datasets 
from TCGA and METABRIC, which also effectively stratified 
BC patients. The signature was constructed based on 
transcriptome data, and its feasible clinical translation ability 
was demonstrated by clinical validation methods. Moreover, this 
method might also be suitable to explore the prognostic effects 
of mitochondria-related genes in other malignant tumors. 
However, there are several limitations in our study. First, the risk 
signature was established based on prognosis, so its application 
is mainly reflected in the survival of BC patients and screening 
of high-risk populations but has little effect on early diagnosis 
and screening. Second, our analysis only used data from public 
databases, and more real-world data are needed to further 
confirm our findings. Third, although several basic experimental
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