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Editorial
Despite the differences in symptomatic pictures among

Neurodegenerative Diseases (ND) all of them result in selective or
generalized neuronal loss. The cascade of events leading to the
neuronal death is multifactorial. The factors involved include
metabolic disturbance, acidosis, excitotoxicity, oxidative stress,
neuroinflammation, pathological aggregation of some proteins, and
disregulation of mitochondrial functions.

Mitochondrial dysfunction has been implicated in number of
neurodegenerative diseases such as Alzheimer’s Disease (AD),
Parkinson disease, Huntington disease, Amyotrophic Lateral Sclerosis
(ALS), multiple sclerosis and others [1]. Mitoprotective strategy for
prevention of a series of neurodegenerative diseases, in particular, AD,
being now one of the most promising approach in the development of
neuroprotective drugs [2,3]. Aside from being an important source of
cellular energy (ATP), mitochondria maintain the intracellular Ca2+

levels within closely defined ranges for the mediation of signaling,
control of neuronal excitability, and the synaptic function. The neurons
within the brain are highly vulnerable to metabolic disturbances;
therefore, impairment of mitochondrial ATP generation clearly
threatens the viability of both neurons and glial cells, the function of
neuronal networks, and, consequently, normal brain function.
Dysregulation of cytosolic Ca2+ levels by failure of mitochondrial Ca2+

buffering, and/or release of the sequestered Ca2+ ions present within
mitochondria contribute to the severe damage of brain tissue in
response to glutamate excitotoxicity, metabolic insults, and
neurotoxins [4]. Similarly, abnormally amplified levels of Reactive
Oxygen Species (ROS) generated by mitochondria also threaten
neuronal viability, since the multiple ROS buffering mechanisms can
be overwhelmed [5]. The phenomenon of Mitochondrial Permeability
Transition (MPT) is tightly connected with these abnormalities. MPT
is defined as a sudden increase of inner mitochondrial membrane
permeability to solutes of up to 1,500 Da that is elicited in response to
exposure to abnormally high levels of Ca2+ ions. The main reason for
this transition is the opening of a non-selective mega-channel, the
Mitochondrial Permeability Transition Pore (MPTP) [6,7]. It leads to
the release of the mitochondria-accumulated calcium and different
proapoptotic factors from the intermembrane space and loss of the
proton gradient and cell respiration, resulting in ATP deficit and
overproduction of ROS. However, this phenomenon is not well
characterized at the molecular level to date.

Different agents and conditions can modulate MPT. The most
common are inorganic phosphate increase (indicating the redox status
of pyridine nucleotides), increase of the intracellular calcium, and
oxidative stress. All these conditions happen in the case of
neurodegenerative pathology and, in particular, as a result of β-

amyloid (Aβ) toxic effect. The intracellular oligomeric forms of Aβ and
other misfolded proteins (tau-protein, α-synuclein, SOD1,
Huntington) may also trigger the MPT [8,9]. It is important that the
vulnerability to MPT-inducing factors increases with aging and it may
be a consequence or delayed effect from the different stress factors,
including the environmental factors, stroke, hypoxia and trauma [10].
Some neurotoxins with the specific neuronal selectivity are widely used
to model ND. Among these are the dopaminergic neurotoxin 1-
methyl-4-phenylpyridinium (MPP+) iodide, which can induce
symptoms of Parkinson’s disease, cholinergic neurotoxin ethylcholine
mustard aziridinium (Af64a) and the endogenous β-amyloid peptide–
Aβ (25-35), which can reproduce the AD symptoms. Earlier it was
shown that these neurotoxins can induce or potentiate the MPT [11].

The development of drugs with the capacity to delay the
neurological deficits associated with ND is an urgent and important
goal. One potential approach to achieve it is to use small molecules
that interfere with cell death signaling mechanisms, which may
contribute to the neuronal loss in ND. From this standpoint the
approach to restore mitochondrial functions and stop the neuronal
progressive death by stabilizing mitochondria looks very attractive. It
was reported that coenzyme Q10 (3) acts as an effective therapeutic
agent for increasing oxygen consumption and ATP production in brain
mitochondria [12]. Another promising agent that may target
mitochondria is an agent Dimebon originally invented as
antihistamine drug. Last years in numerous research it was shown that
neuroprotective effect of Dimebon and some structurally close agents
related to it to the stabilization of the mitochondrial functions, in
particular, by modulating the MPTP [13,14]. Further search for
selective mitoprotectors can open new window for the development
novel generation of efficient neuroprotectors for broad spectrum of
neurodegenerative disorders.
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