
Volume 2 • Issue 10 • 1000e103
J Clinic Experiment Cardiol
ISSN:2155-9880 JCEC, an open access journal 

Editorial Open Access

Knowlton and Chen, J Clinic Experiment Cardiol 2011, 2:10 
DOI: 10.4172/2155-9880.1000e103

Mitochondria have long been recognized for their essential role 
in generating energy to sustain cardiac contraction.   For years these 
organelles were viewed as static factories producing high energy 
phosphates, such as ATP, to power the heart and other organs. However, 
research over the last 15 years, beginning first in yeast and now in 
mammalian cells, has up-ended our understanding of mitochondria 
[1-4]. Mitochondria are thought to have arisen from the endocytosis of 
bacteria by other unicellular organisms, and these organisms managed 
to survive in a symbiotic relationship in the host cell [5]. Such a change 
is hypothesized to have occurred hundreds of thousands of years ago, 
and today mitochondria, although they contain DNA coding for 13 
genes, are no longer anywhere near self-sufficient with many of their 
proteins encoded by nuclear DNA.

In the 1990’s biologists discovered that yeast mitochondria rather 
than being static, undergo constant division (fission)  and fusion, 
and that fission and fusion are essential for maintaining healthy 
mitochondria [1,3,6]. Loss of fission results in large networks of 
fused mitochondria, while excess fission leads to small, fragmented 
mitochondria.   Furthermore, normal mitochondrial fusion is necessary 
for the stability of mitochondrial DNA [7]. Rather than occurring as 
isolated organelles in the cell, the mitochondria are interconnected and 
linked to cytoskeletal elements and inter-communicate. In mammalian 
cells there are 3 fusion proteins and 2 fission proteins identified 
to date.  Mitofusin (Mfn) 1 and 2 fused the outer membrane of the 
mitochondria when two mitochondria join by fusion.   Optic atrophy 
(OPA) 1 fuses the inner membrane, and also appears to have important 
functions linked to cristae structure and electron transport. Fission 
(Fis) 1 recruits Dynamin related protein (Drp)1 to the cell membrane, 
where Drp1 forms a multi-subunit belt around the cell leading to 
fission. Mutations in the fusion proteins have been linked to inherited 
neuropathies, including Charcot-Marie-Tooth disease.

Mitochondrial fission and fusion, described relatively recently 
and most extensively in yeast, occur constantly and are thought to be 
critical for normal mitochondrial function. In the yeast mitochondrial 
fusion and fission occur as frequently as every two minutes [8]. In 
contrast, in HeLa cells (a cancer cell line), fusion began within 2 h and 
all of mitochondria had undergone fusion by 12 h [9]. It is thought that 
fusion and fission occur at a much slower rate in primary mammalian 
cells, with a recent paper suggesting cardiac myocyte mitochondria 
may undergo fission and fusion only every 16 days [10]. If fission is 
interrupted, large networks of fused mitochondria occur. If fusion 
fails, the mitochondria become small and fragmented. Abnormalities 
in fission and fusion can lead to apoptosis [2,11], which is an important 
mechanism of cardiac myocyte loss in heart failure [12-14]. Thus, it is 
critical to maintain a symmetry between fusion and fission.

In the failing heart mitochondria are small and fragmented with 
loss of organization compared to normal hearts [15]. This change in 
mitochondrial morphology was associated with a decrease in OPA1 
expression, both in a rat model of heart failure (high LAD ligation) 
and in end-stage failing human hearts with ischemic cardiomyopathy 
removed for transplant. No change in OPA1 levels were found in 

nonischemic cardiomyopathy. The fusion proteins, Mfn1 and 2, 
along with the fission protein, Drp1, were all increased in human 
ischemic and nonischemic failing hearts, suggesting an upregulation 
of fission and fusion in the failing heart. Thus, there were similarities 
between ischemic and nonischemic cardiomyopathy, but also distinct 
differences.

Conditional deletion of MFn1/Mfn2, which fuse the outer 
mitochondrial membrane, in adult mice leads to mitochondrial 
fragmentation, mitochondrial dysfunction and a rapidly progressive 
dilated cardiomyopathy [10]. If these genes are ablated in the embryo, 
the result is lethal to the embryo. In contrast, deletion of Mfn2 alone 
caused only mild changes in the heart [16]. The mitochondria were 
surprisingly larger and there was mild to moderate cardiac hypertrophy, 
with minor changes in cardiac function. Unexpectedly, deletion of 
Mfn2 was associated with better recovery from ischemia/reperfusion, 
possibly secondary to a reduction in reactive oxygen species (ROS) 
mediated  mitochondrial depolarization. It is known that Mfn1 and 
Mfn2 can each compensate to a degree  for the loss of the other, and 
this explains the absence of severe mitochondrial dysfunction with loss 
of Mfn2 [17]; however it does not explain the improved recovery from 
ischemia and the observed reduction in ROS.

Fragmented, small mitochondria have been found in cardiac 
disease. Can inhibiting fission be protective? Both heart failure and 
acute ischemia are associated with mitochondrial fragmentation 
[15]. Given that a balance between fission and fusion is critical for 
maintaining mitochondrial health and therefore cardiac myocyte 
health, it would seem plausible that inhibition of what appears 
to be excess mitochondrial fission would protect the heart. In an 
elegant and thorough study, investigators have shown exactly that 
Inhibition of expression of the fission protein, Drp-1, reduced cell 
death after simulated ischemia/reperfusion [18]. This treatment also 
reduced mitochondrial fragmentation and preserved long, tubular 
mitochondria.  Furthermore, mitochondrial division inhibitor-1 
(MDI-1), a pharmacologic inhibitor of Drp1, reduced mitochondrial 
fragmentation, reduced opening of the mitochondrial permeability 
pore, and reduced infarct size in a mouse model of myocardial ischemia.  

Findings from this nascent field investigating mitochondrial 
fission and fusion in the heart suggest that this is a potential new 
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set of targets for intervention to limit cardiac injury both acutely in 
ischemia/infarction, but also potentially in the chronic state of ongoing 
inflammation and injury, which characterizes heart failure. Although 
application in the clinic is not yet a possibility, already there are studies 
showing reduction in mitochondrial fragmentation and in infarct size in 
a rodent model. Thus this new field of mitochondrial fission and fusion 
has great potential to lead to new therapeutics to reduce cardiovascular 
morbidity and mortality. Although we have made enormous strides in 
the treatment of cardiovascular diseases, there remains need for new 
innovative treatment to further decrease the morbidity and mortality 
from these diseases.
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