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Abstract

The pulmonary vasculature in infants born with congenital heart defects that cause increased Pulmonary Blood
Flow (PBF) is subjected to pathologic mechanical forces, including chronically increased shear stress, resulting in
early functional abnormalities of the vascular endothelium. These functional abnormalities occur prior to the
development of well-described morphologic changes. However, little is known about the factors that transduce the
abnormal shear forces associated with increased PBF into abnormal vascular function and reactivity. Recently the
disruption of mitochondrial function has been identified as a new mechanism that leads to the development of
pulmonary endothelial dysfunction. This is a complex process that involves post-translational regulation of multiple
proteins and the mitochondrial redistribution of uncoupled endothelial nitric oxide synthase (eNOS) resulting in the
disruption of carnitine metabolism and subsequently mitochondrial bioenergetics. As both eNOS and GTP
cyclohydrolase I, the rate limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis, are chaperoned by hsp90 this
results in a “feed-forward” signaling cascade in which eNOS becomes progressively more uncoupled resulting in
pulmonary endothelial dysfunction. This review will discuss the current knowledge in the field, the limitations in our
understanding this complex process, and the potential for targeting mitochondrial function in the treatment of
children born with congenital heart defects that result in increased pulmonary blood flow.
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Introduction
Congenital heart defects with increased PBF are associated with the

development of increased pulmonary vascular reactivity and
pulmonary hypertension [1-4]. In the post-natal period, the presence
of large communications at the level of the ventricles (e.g. ventricular
septal defect) or great vessels (e.g. truncus arteriosus) exposes the
pulmonary circulation to abnormal elevations in blood flow and

pressure, which results in progressive structural and functional
abnormalities of the pulmonary vasculature [3,5-13]. Structural
changes involve the progressive diminution of the pulmonary vascular
cross-sectional area, ultimate obliteration of large portions of the
vascular bed, and death secondary to hypoxia and/or myocardial
failure. Although advanced structural changes are irreversible, surgical
correction can reverse early changes, which is the basis for the repair
of many congenital heart defects in the neonatal period [4]. Functional
changes, however, are not as readily addressed by early surgical
intervention. In fact, even children with reversible disease suffer
significant morbidity and mortality in the peri-operative period
secondary to increased pulmonary vascular reactivity [2,3,14-18].

Increased vascular reactivity may produce severe hypoxemia,
acidosis, low cardiac output, and death if not treated immediately. In
addition, infants and children with heart defects that result in single
ventricular physiology requiring staged surgical palliation for survival
may suffer significant morbidity and mortality from abnormal
pulmonary vascular reactivity. In fact, in these patients, who often
have periods of increased PBF, even early, clinically undetectable,
pulmonary vascular alterations may severely impact their clinical
course by limiting surgical options or complicating peri-operative
management. Although, the precise mechanisms responsible for the
early pulmonary vascular abnormalities associated with increased PBF
remain unclear, alterations in NO-signaling is known to be a
significant contributor [19-23]. The following sections will describe
our latest understanding of the mechanisms that underlie the
disruption in NO signaling in CHD associated with increased PBF.

Much of the animal studies referenced in this review utilize a lamb
model of Congenital Heart Disease (CHD) with increased pulmonary
blood flow, created by the in utero placement of a large
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aortopulmonary graft between the main pulmonary artery and the
ascending aorta. These Shunt lambs undergo the postnatal changes
that occur at birth in children with congenital heart defects that result
in increased PBF, mimicking the clinical condition. These include
failure to thrive, early endothelial dysfunction, abnormal pulmonary
vascular reactivity and remodeling [24,25] as well as enlargement of
the heart. Although Shunt lambs exhibit a burst in angiogenesis, likely
induced in an attempt to decrease shear forces through the lung
vasculature that results in an increase in blood vessel number in the
lung at 4-weeks of age, under electron microscopy there are already
signs of endothelial damage. This unique, powerful model facilitates
the ability to investigate early mechanisms of disease.

Arginine Homeostasis
NO is generated from L-arginine within the endothelium through

the activity of the Ca2+ dependent flavor enzyme NOS predominantly
localized in caveolar structures within the plasma membrane [26].
Factors that change the ability of eNOS to obtain sufficient levels of L-
arginine can have a significant negative impact on the ability of eNOS
to generate NO (Figure 1).

Figure 1: Regulation of arginine homeostasis in the lung

Methylated proteins within the cell are degraded by the action of
the Protein Arginine N-Methyltransferase (PMRT) family of proteins
resulting in the generation of symmetric dimethylarginine (SDMA)
and asymmetric dimethylarginine (ADMA). ADMA is converted to L-
citruline by Dimethylarginine dimethylaminohydrolase (DDAH). L-
citrulline is also generated by the action of nitric oxide synthase (NOS)
in the enzymatic reaction that generates NO and consumes L-arginine.
L-citrulline is converted back to L-arginine by the arginine recycling
enzymes, argino succinate synthase (ASS) and argion succinate lyase
(ASL). L-arginine can also be consumed by arginase to generate urea.

This leads to a situation in which the enzyme becomes uncoupled.
Uncoupling occurs when electrons obtained from nicotinamide
adenine dinucleotide phosphate (NADPH) are redirected to molecular
oxygen to generate the superoxide anion. The presence of NO and
superoxide in close proximity within the caveolae then leads to their
rapid interaction and the subsequent generation of the reactive
nitrogen species, peroxynitrite. Peroxynitrite in turn can interact with
aromatic residues with protein, especially tyrosine residues, to induce
protein nitration. This can induce changes in the function of the
protein.

Further, nitration is a covalent modification that requires new
protein synthesis to restore normal signaling. Over the last decade it
has become apparent that the nitrative stress associated with increased

peroxynitrite generation plays a key role in the development of
pulmonary endothelial dysfunction associated with CHD and
increased PBF. Indeed studies have shown in both cultured Pulmonary
Arterial Endothelial Cells (PAEC) and Shunt lambs that disruptions in
arginine homeostasis play a major role in eNOS uncoupling and
peroxynitrite generation.

L-arginine levels are decreased as early as 2-weeks after birth in
Shunt lambs [27]. This is associated with decreases in the activity of
the arginine recycling enzymes, Arginino succinate Synthetase (ASS)
and Arginino succinate Lyase (ASL). ASS and ASL utilize the
byproduct of the NOS reaction, L-citrulline to regenerate L-arginine
[28-30]. In addition to a reduction in L-citrulline recycling, L-arginine
degradation is also enhanced secondary to an increase in arginase
activity [27]. Shunt lambs also exhibit increases in the amino acid,
asymmetric dimethylarginine (ADMA) an endogenous NOS [31].

ADMA is generated by the turnover of methylated proteins and it
levels are regulated both by its generation through the activity of the
protein arginine N- methyltransferase (PRMT) family of proteins and
through its degradation via the dimethylarginine
dimethylaminohydrolase, DDAH-1 and DDAH2. Using our lamb
model of CHD associated with increased PBF (Shunt) it appears that
ADMA levels become elevated secondary to a reduction in DDAH
activity rather than increases in ADMA generation [31].

Interestingly, the decrease in the activity of ASS, ASL and DDAH as
well as the increases in arginase activity are not associated with
changes the respective proteins suggesting that an, as yet unidentified,
post-translation events are involved in the dysregulation of arginine
homeostasis associated with increased PBF.

Mitochondrial Redistribution of eNOS
To exert its physiologic effect on Smooth Muscle Cell (SMC)

relaxation, endothelial NOS is localized to the plasma membrane. This
occurs through a regulated process that involves an initial
myristoylation event at the glycine residue located at amino acid (aa)
position 2 which allows eNOS to enter and traffic through the Golgi-
endoplasmic reticulum (ER) where it becomes palymitolyated at
multiple sites. When it exits the ER, eNOS becomes localized to the
special invaginations within the plasma membrane called caveolae.
There is evidence that Enos trafficking through the Golgi-ER complex
is enhanced by its interaction with caveolin-1, which is the major
structural protein of the caveolus [32,33].

Within the caveolus, its interaction with caveolin-1 keeps eNOS in a
quiescent state and the enzyme becomes active when intracellular
calcium levels raise leading to the generation of a calcium-calmodulin
complex that dislodges caveolin-1 from eNOS allowing NO levels to
rise.

However, data have shown that eNOS can also be located on the
mitochondrion through a sequence located within aa627-631
(RRKRK) that has been designated the mitochondrial translocation
loop [34].

A mutant eNOS in which this sequence was deleted prevents its
mitochondrial accumulation when expressed in COS-7 cells [34].
More recently nitration and phosphorylation events have been shown
to be involved in the redistribution of eNOS to the mitochondria. The
available data indicate that the phosphorylation of eNOS at T495, via
ET-1 mediated activation of protein kinase C delta (PKCδ), leads to
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uncoupling of the enzyme and that the subsequent nitration events
result in mitochondrial redistribution [35] (Figure 2).

Figure 2: Factors that regulate the mitochondrial translocation of
endothelial NOS

Endothelin-1 stimulates PKCδ activity that in turn binds to, and
phosphorylates, eNOS at T495. The nitration mediated activation of
Akt1 also results in the sequential phosphorylation of eNOS at S1177
and S617. In both cases this results in eNOS mitochondrial
translocation. The proteins that are involved in the redistribution are
unknown but hsp90 and/or c-terminal of hsp70 interacting protein
(CHIP) may be involved. The mitochondrial docking protein is also
unknown.

In addition, ADMA-mediated uncoupling of eNOS has been shown
to result in the nitration-mediated activation of Akt1 and this leads to
the sequential phosphorylation of eNOS at S1177 and S617 [36]
(Figure 2). Molecular modeling studies indicate that the
phosphorylation of S617 exposes the mitochondrial translocation loop,
leading to mitochondrial redistribution of the enzyme [36].
Interestingly, these two divergent kinase pathways do not appear to
overlap, as ET-1 does not stimulate Akt1 signaling although eNOS
becomes uncoupled. Why this is the case and what are the relative
roles of each pathway during the development of pulmonary
endothelial dysfunction remains unclear.

In addition, it remains to be resolved whether these
phosphorylation events are sufficient to drive the mitochondrial
redistribution of eNOS. However, it is more likely that there are other
proteins that recognize the mitochondrial translocation loop and act as
chaperones to guide the process (Figure 2). The identities of these
putative factors are unclear, but we have postulated that this protein
may be the molecular chaperone, C-terminal Hsc70-interacting
protein (CHIP). This is based on the following evidence:

(1) CHIP activity is stimulated both by nitrative stress in PAEC and
in Shunt lambs [31];

(2), CHIP can be recruited to heat shock protein 90 (hsp90)
chaperoned proteins and eNOS is an hsp90 interacting protein [37];

(3) Molecular chaperones have been shown to play key roles in the
translocation of nuclear-encoded proteins into the mitochondrion
[38,39];

(4) CHIP facilitates the assembly of translocation complexes [40]
and;

(5), CHIP has been shown to associate with eNOS, and this leads to
and alteration in its sub-cellular distribution [41].

Further, CHIP contains a region located between aa185-190
(EGDEDD) that is highly negatively charged [42] which could interact
with the positively charged eNOS mitochondrial translocation loop.
Alternatively, it is possible that hsp90 could itself be the protein that
chaperones eNOS to the mitochondria. Indeed studies over the last
decade have identified an important role for hsp90 in targeting
proteins for mitochondrial import through the TOM40 complex
[43,44]. However, a counter argument for hsp90 being important in
the mitochondrial redistribution of eNOS comes from data that
indicate that eNOS-hso90 interactions decrease in Shunt lambs in a
time-dependent manner, secondary to reduced levels of ATP. As the
chaperone activity of hsp90 is dependent on ATP, decreases in cellular
ATP would attenuate its activity and thus reduce eNOS mitochondrial
redistribution [45-48]. However, it is also possible that both CHIP and
hsp90 could both be involved with hsp90 playing a role in the early
stages and then as its activity declines, CHIP takes over.

Mitochondrial Dysfunction
The redistribution of uncoupled eNOS to the mitochondria leads to

the development of mitochondrial dysfunction and reductions in the
endothelial levels of ATP (Figure 2). Again this is a complex process
that involves increased oxidative stress within the mitochondria, a
decrease in mitochondrial membrane potential and a reduction in β-
oxidation secondary to a disruption of the carnitine homeostasis. The
increase in oxidative stress within the mitochondria appears to be due
to a decrease in manganese superoxide dismutase (MnSOD) activity.
This is a rapid process occurring within 2h of the induction of
nitrative stress and correlates with a reduction in MnSOD protein
levels [49].

The rapid pace of this process suggests that it is independent in
changes in gene expression and that perhaps there is enhanced
degradation of MnSOD within the mitochondria itself. The trigger for
this process is unclear but could be related to nitration of the MnSOD
protein. MnSOD protein is nitrated in rats with advanced forms of
pulmonary hypertension [50]. The mitochondrial membrane potential
appears to be attenuated secondary to increased levels of uncoupling
protein-2 (UCP-2). The uncoupling proteins are a multi-gene family
whose action short-circuits the proton motive force that is used by the
mitochondria to allow ATP generation. UCP-1 is the prototypical
UCP and is involved in heat generation in brown fat tissue [51].
However, it should be noted that the action of UCP-2 is controversial
which published studies suggesting that besides changes in expression,
UCP-2 requires a further unidentified post-translational event before
it becomes active [52,53].

β-oxidation is dependent on carnitine that acts as a carrier to allow
activated fatty acids to cross the inner mitochondrial membrane. In
addition, Carnitines are involved in the elimination of fatty acyl-CoA
metabolites and are important in maintaining the ratio of free and
acyl-CoA. Carnitine is present as a non-esterified free carnitine (FC)
or an esterified acylcarnitine form (AC) and the A: FC ratio can be
used to determine mitochondrial health. With a low AC: FC ratio
indicating a cell with normal mitochondrial function and a high AC:
FC ratio correlating with mitochondrial dysfunction. Carnitine is
delivered to the mitochondria through the action of a family of organic
cation transporters (OCT).

The important members of this family are OCTN1- a pH-
dependent and sodium-independent multi-specific organic cation
carrier [54], OCTN2- a sodium-dependent organic cation transporter
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[55]; and OCTN3- a mammalian peroxisomal membrane carnitine
transporter [56]. Inside the mitochondria, carnitine is acted upon by a
group of enzyme s that are collectively known as carnitine
acyltransferases which act in concert to allow the reversible transfer of
the acyl group from acyl-CoA to carnitine. These enzymes have been
identified based on both the specificity towards the acyl and where
their localization. The carnitine palmitoyl transferase (CPT) system
comprises three proteins: carnitine palmitoyl transferase 1 (CPT1)
which is located in the outer mitochondrial membrane, the carnitine-
acylcarnitine translocase (CACT), which is an integral inner
membrane protein, and carnitine palmitoyl transferase 2 (CPT2)
which is located on the inner mitochondrial membrane [57].

These enzymes work in concert to allow the transport of long-chain
fatty acids from the cytosolic compartment into the mitochondrial
matrix allowing β-oxidation to occur.

There are two other carnitine acyltransferases that work in
conjunction with the CPT system: carnitine octanoyl transferase
(COT) [58,59] and carnitine acetyltransferase (CrAT) [60]. CrAT is
able to utilize only short-chain acyl groups (C1-C4) as substrate while
COT is able to utilize both medium and long-chain fatty acids (C5-
C12) [61]. By acting together these enzyme form the “carnitine
shuttle” which is responsible for regulating cellular carnitine
homeostasis. Shunt lambs have an elevated AC: FC ratio indicating
that there is a decrease in β-oxidation [62].

The disruption of β-oxidation is complex and involves both
transcriptional and post-transcriptional events. Published studies
indicate that Shunt lambs have decreased expression of 3 important
carnitine-dependent enzymes (CPT1, CPT2 and CrAT) [62] that
appears to be due to reduced peroxisome proliferator activated
receptor gamma (PPARϒ) signaling [63,64].

In addition, to changes in expression there is also a post-
translational inhibition of carnitine acetyl transferase (CrAT) that is
mediated by nitration. The link between carnitine homeostasis and
NO signaling has been further strengthened by data demonstrating
that siRNA-mediated down-regulation of CrAT is sufficient to
attenuate the shear-mediated increases in NO signaling in PAEC [65].

Hsp90 and NO Signaling
The 90 kD heat shock protein (hsp90) is part of a family of proteins

that act as molecular chaperones to modulate protein activity. Hsp90 is
known to increase eNOS activity [66]. Hsp90 is ATP dependent and
the ATPase site of the chaperone is responsible for the auto-
phosphorylation required to enable hsp90 to interact with client
proteins [67,68]. Several studies have shown that disruption of hsp90-
eNOS interactions attenuates NO production [66,69-72].

Further, decreased hsp90 binding results in eNOS “uncoupling” i.e.,
consumption of NADPH is uncoupled from NO synthesis, resulting in
the production of superoxide [73]. Sessa’s group has shown that hsp90
interacts with aa300-400 of eNOS, while Pritchard’s group, using an
elegant overlapping decoy peptide strategy, identified aa301-325 as
being important for hsp90 interaction with eNOS [74].

Previous work has shown that eNOS-hsp90 interactions are
progressively disrupted during the development of the endothelial
dysfunction associated with increased PBF [75]. In addition to eNOS,
hsp90 also chaperones other proteins involved in NO signaling. GTP
cyclohydrolase I (GCHI), the key BH4 biosynthetic enzyme, has been
shown to be a client protein of hsp90 [31] and that the decrease in

hsp90 activity in Shunt lambs [76] results in the proteasomal
degradation of GCHI [31] (Figure 3).

Figure 3: Feed-forward signaling pathway resulting in pulmonary
endothelial dysfunction.

Initial disruption in arginine homeostasis results in eNOS
uncoupling and its redistribution to the mitochondria. This in turn
results in a disruption in mitochondrial bioenergetics resulting in
mitochondrial dysfunction and reductions in ATP generation. The
decrease in ATP leads to an attenuation of hsp90 activity, reducing its
ability to chaperone GTP cyclohydrolase I (GCHI) and eNOS resulting
in progressive eNOS uncoupling. When NO signaling is sufficiently
compromised this results in pulmonary endothelial dysfunction.

Thus, the loss of ATP due to mitochondrial dysfunction attenuates
hsp90 activity resulting in a “feed-forward” signaling cascade in which
eNOS becomes ever more uncoupled leading to less NO- and more
peroxynitrite-being produced driving pulmonary endothelial
dysfunction [75] (Figure 3). In addition, the NO receptor, soluble
Guanylyl Cyclase (sGC) is also found in a complex with hsp90 and
Inhibition of hsp90 activity using geldanamycin stimulates it
proteasomal degradation again via CHIP reducing the ability of the
cell to produce cyclic guanosine monophosphate (cGMP) [77-80].
Although in Shunt lambs increased BNP-mediated activation of
particulate GC may be able to compensate [81]. In addition, although
it does not appear to be chaperoned by hsp90, the target of cGMP,
protein kinase G-1α (PKG-1α) is also compromised in Shunt lambs
[82] through the nitration of Y247 that reduces the ability of the
protein to bind cGMP [83] (Figure 3). Thus, in addition to an increase
in NO generation the downstream effectors of NO are also
compromised.

The Mitochondrion as a Therapeutic Target
As discussed above, carnitine homeostasis is disrupted in Shunt

lambs, at least in part, through a loss of PPARϒ signaling [64]. PPARϒ
signaling is an attractive target due to the availability of the
thiazolidinediones (TZD’s or glitazones) family of drugs initially
introduced to treat type 2 diabetes [84,85]. TZDs act by mimicking the
endogenous ligands of PPARs leading to the nuclear localization of the
receptor and enhanced DNA binding in conjunction with the Retinoid
X Receptor (RXR) [86]. This results in either transactivation or trans-
repression of a number of genes. Treating Shunt lambs with the TZD,
rosiglitazone (Avandia) has been shown to preserve carnitine
homeostasis, mitochondrial function and ATP levels. This in turn
preserves NO signaling by preventing the loss of hsp90 chaperone
activity [64,87]. However, moving these studies forward into children
with CHD should be approached with caution due to the checkered
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past that the TZDs have exhibited in clinical trials. Early studies
implicated rosiglitazone use with an increased risk of coronary heart
disease and heart attacks [88,89] and led to safety concerns [90].
However, the RECORD trial, specifically designed to assess cardiac
outcomes, concluded that rosiglitazone use in diabetic patients does
not increase the risk of overall cardiovascular morbidity or mortality
compared to standard glucose lowering agents [91]. However,
concerns still exist [92]. It has also been suggested that different TZDs,
e.g., pioglitazone (Actos) or troglitazone (Rezulin), may have a
reduced likelihood for inducing adverse effects. But this remains
unproven.

Although L-carnitine has been utilized extensively over a number of
decades to improve mitochondrial function in children born with
various mitochondrial myopathies its therapeutic potential in treating
cardiovascular disease has only been explored more recently [93,94].
L-carnitine has been shown to be cardio protective in a number of
animal and human studies [95-99]. We have recently carried out a
prevention trial in which Shunt lambs were treated for 4-weeks with
100 mg/kg/day of L-carnitine or a vehicle. L-Carnitine-treated lambs
had increased expression of the carnitine shuttle enzymes CPT1 and
CPT2 protein levels, increased CrAT enzyme activity and an improved
AC: FC ratio [100]. This preservation of mitochondrial function
correlated with improved hsp90 function, increased NO generation
and reduced NOS uncoupling [100]. Most importantly the loss of
endothelial dependent vasodilation was prevented [100]. These data
confirm the therapeutic possibilities of targeting the mitochondria to
prevent the development of pulmonary endothelial dysfunction in
children born with CHD that results in increased PBF.

Conclusion
Over the last decade our work using a lamb model of CHD with

increased PBF has linked the loss of NO signaling and subsequent
pulmonary endothelial dysfunction to a loss of carnitine homeostasis.
Further, our prevention studies indicate that maintaining the carnitine
homeostasis, using the TZD, rosiglitazone to maintain expression of
the carnitine homeostasis enzymes or by chronic ingestion of L-
carnitine can prevent the mitochondrial dysfunction in the lung
exposed to chronic high levels of PBF. This in turn preserves hsp90
function and NO signaling. Thus, there is potential clinical utility in
these types of interventions, especially for L-carnitine that has been
used for several decades to treat in born errors of metabolism with no
obvious side effects. However, before proceeding to clinical trials it will
be important to confirm that the changes in carnitine homeostasis
observed in Shunt lambs are recapitulated in children born with CHD
that result in increased PBF.
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