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Abstract

Pervasive developmental disorders, or autism spectrum disorders, are multifaceted and have a high rate of
occurrence. Additionally, the origin of Autism appears to be multidimensional and largely unknown. Thus, it would
appear novel approaches and concepts are needed in this area of scientific endeavor. In this regard, microbial cells
harbored within the human gut and elsewhere are being studied to understand their multi-functional properties and
their ability to affect physiological activities in their “host” organism. The communities of approximately 10 trillion
microbial cells that live within the gut are involved in functions such as metabolism, nutrition and immune regulation.
We and others surmise this microbiota can contribute to disruption of normal activities, causing harmful pathologies
such as gastrointestinal complications, obesity, and diabetes and autism. They have the ability to trigger
inappropriate immune activation, especially macrophages, which can travel from the gut and penetrate the blood
brain barrier and communicate inappropriately with neural cells, altering behavior. Normally these immune cells can
enter the brain and become microglia. However, being abnormally stimulated, many more can enter the brain,
awakening the sentinel microglia and establishing a proinflammatory state, inducing hypoxia (altering mitochondrial
performance). Thus, the microbiome has the potential to extend its influence into the brain, suggesting this may also
take place within the parameters of normal activity. In part, the behavioral outcome of such an inappropriate invasion
would depend on the region(s) penetrated, manifesting itself with a multidimensional behavioral profile such as
occurs in autism.
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Introduction
Pervasive developmental disorders (PDD), or autism spectrum

disorders (ASD) have a high rate of occurrence and their origin
appears to be multidimensional and largely unknown. PDD
encompasses a class of disorders with the following characteristics:
impairments in social interaction, imaginative activity, verbal and
nonverbal communication skills and a limited number of interests and
activities that tend to be repetitive [1,2]. Clearly, these comportments
are a part of normal behaviors; however, in autism they are
exaggerated or diminished in their expression levels, suggesting
alterations in cellular communication.

PDD exhibits many subtypes: childhood autism; atypical autism;
Rett’s syndrome; other childhood disintegrative disorders; overactive
disorder associated with mental retardation and stereotyped
movements; Asperger syndrome; other pervasive developmental
disorders and other pervasive disorders [3]. Thus, PDD confounds an
accurate diagnosis. Given the central nervous system’s (CNS)
functional architecture, expression of the components of this disorder
may manifest themselves alone or in combination to produce the final
behavioral “output”. Tsai [4] speculates the origin is in neurological
abnormalities, whereas Trottier et al. [5] surmises a pathophysiologic
process, arising from the interaction of an early environmental insult
and/or a genetic predisposition. Volkmar [2] speculates that autism is
one of the most heritable of all psychiatric conditions. In any event, a
number of proposed causes have been suggested, including medical
conditions (e.g., phenylketonuria, fragile X syndrome, and tuberous

sclerosis), perinatal impairment, and autoimmune disorders. Genetic
origins are currently the focus of intensive research [5].

Discussion
Given the multifaceted, complex nature of autism, we propose that

the gut microbiome is playing a role in the initiation and sustainability
of autism and, in part, can account for its complex behavioral
manifestations, as well as providing insight into potential divergent
origins. Others support this hypothesis as well [6-10]. Microbial cells
harbored within the human gut and elsewhere are being studied to
understand their multifunctional properties and their ability to affect
physiological activities in their “host” organism. The community of
approximately 10 trillion microbial cells that live within the gut are
involved in functions such as metabolism, nutrition and immune
regulation [11]. While the microbiota can contribute to these positive
physiological conditions, they can also be disrupted, causing harmful
pathologies such as gastrointestinal complications, obesity, and
diabetes [11]. Furthermore, we surmise they have the ability to trigger
inappropriate immune activation, especially in macrophages, in their
immediate environment. These activated cells can then be transported
to the brain via the vasculature. Normally these immune cells can
enter the brain and become microglia [12]. If abnormally stimulated,
many more can enter the brain, awakening the sentinel microglia and
establishing a proinflammatory state [13]. Thus, the microbiome has
the potential to influence the brain by stimulating these cells, which
then travel to and enter this privileged environment.

Abnormal shifts in the ratios of the different components of the
microbiome can also initiate various pathologies, adding to the trigger
concept hypothesis. Though information regarding the various ratios
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of the different populations of microbiota such as Firmicutes,
Bacteroidetes and Actinobacteria are conflicting in studies, it can be
determined that different ratio’s may contribute to obesity [11]. Not
only does the composition of these gut microbiota affect obesity, but it
also affects the obesity-associated condition of type 2 diabetes. A
recent study using 16S rRNA compositional sequencing demonstrated
a reduction of the class of microbiota Clostridia and also Firmicutes in
a test group who had type 2 diabetes [11]. The microbiota
Bacteroidetes and Betaproteibacteria were identified to be heightened
compared to the control group. Other recent studies have been able to
identify microbial markers illustrating an increase of opportunistic
pathogens in the gut of type 2 diabetes patients.

Recent reports also have suggested that autism spectrum disorders
(ASDs), e.g., behavioral symptoms, may increase if dietary and gut
factors worsen over time. When factors such as hospitalization, early
antibiotic exposure and perinatal infection occur, the risk of ASD
increases, in all probability due to the gut microbiota being altered
[14]. Another factor that may trigger ASD is the enteric short-chain
fatty acids (SCFAs) that gut bacteria produce after dietary
carbohydrates are fermented. One major SCFA that is known to be
produced by ASD-associated gastrointestinal bacteria is propionic acid
[14]. A recent study conducted on rodents administering propionic
acid provides evidence that this SCFA can produce reversible
behavioral changes, such as metabolic, neuroinflammatory, and
epigenetic alterations, which are also identified in ASD [14].
Importantly, these alterations may be associated with mitochondrial
dysfunction involving carnitine metabolism, as well as epigenetic
modulation of the genes associated with ASD [8]. Taken together, the
causes of ASDs are potentially influenced by environmental factors,
which cause intestinal microbiota to become altered, suggesting novel
prevention or treatment methods.

Mitochondria
Interestingly, many individuals who have ASD also exhibit

mitochondrial dysfunctionality and gastrointestinal (GI) symptoms
[14,15]. Individuals that have ASD and also mitochondrial disorders
often do not exhibit primary genetic mutations. Without there being
signs of genetic mutation, it is possible that mitochondrial disorder
occurs due to a combination of environmental triggers and genetic
susceptibilities. An unsuspecting trigger may be antibiotics, which
affect the gut bacteria and mitochondria, especially due to this
organelle’s bacterial origin [16].

Mitochondria are very sensitive organelles that can be affected by
both endogenous and exogenous environmental stressors that alter
oxygen and glucose levels, and their performance [17]. These stressors
include factors such as toxicants, immune activation, metabolic
disturbances, and iatrogenic medications, which are also known to be
correlated with ASD [15]. Due to both the mitochondria and ASD
being affected by these common stressors, this further suggests causes
of ASD [15]. It is also known that the mitochondria have an important
role in ASD, where levels of enteric bacteria, such as Clostridia spp.,
are higher in children with ASD [15]. This bacterium produces short-
chain fatty acid metabolites, which are known to be toxic to
mitochondria, causing dysfunction.

If gut microbiome (GM) composition is as important as it appears
to be, then it is possible that there is a therapeutic approach to
manipulate the GM [9]. This could lead to the improvement of ASD
symptoms, comorbidities, and potentially even gastrointestinal
symptoms. Recent research has proposed a hypothetical approach to

test the relevance of GM to ASD [18]. There are many known
treatments that potentially alter or reduce the composition of gut
microbiome, such as antibiotics [18]. Certain treatments, such as fecal
microbiota transplantation, probiotics, eating unprocessed and
fermented foods can also replenish GM, presumably helping ASD
individuals. Dietary treatments such as eating healthier foods or taking
vitamins may also alter the composition of GM, and therefore,
alleviate ASD symptoms [18-20].

Consolidation
We surmise that various types of stress, such as changes to the

microbiome composition, antibiotics, etc., may create a local
environment, e.g., neural, gut, etc., that is proinflammatory in nature
[21-24]. This environment may also be initiated by hypoxia, which
causes mitochondrial to become dysfunctional, creating poorly
functioning cells [13,16,17,25,26]. In susceptible individuals, if this
state is not alleviated, it may become chronic, potentially leading to
autism. As noted earlier, the stress-induced dysfunctional
mitochondria may cause an immune response, e.g., abnormal
macrophage excitation, penetration into the brain, activation of
microglia and further brain stimulation via inappropriate release of
chemical messengers, simply by having a hypoxic event, which the
stressor initially causes [12,13,17,27]. Predicted entry points, e.g.,
choroid plexus, would provide widespread access to the privileged
compartment and explain the diverse symptomology of autism.

The multifactorial etiology of autism opens the door to novel
concepts. Epigenetic modifications, e.g., DNA methylation and histone
modifications, certainly affect stereospecific regulatory processes of
genetic outcomes. Siniscalco [8,9] and colleagues note that nutritional
deficiencies and other chemical stressors appear to be epigenetic
regulators, which affect individual health via affecting the gut
microbiome. Preferential evidence favoring genetically driven
etiological factors is compelling and is inherently complex, but
perhaps underestimates the contribution of environmental
determinants [2,28,29] such as the gut microbiome. Along these lines
of evidence, neuroimaging studies have indicated the involvement of
broad and developmentally interrelated neural systems, contradicting
the notion of single core deficits [2]. We surmise this indeed is the
case. However, given the complexity of autism, we may indeed be
faced with a disorder that manifests itself from varying abnormal
structures and brain areas, as well as triggering events. The tendency to
“lump” all into a single event may be fatally flawed for autism. In this
regard, we also surmise that inappropriately activated immune cells,
e.g., macrophages, could and do wander into the brain, releasing
common chemical messengers and that, in so doing, stimulate
abnormal behavioral outcomes, e.g., autism-like [13]. This is possible
because of common receptors on immune and neural cells, which is
the hallmark of neuroimmunology. Importantly, what is causing this
abnormal immune cell non-specific excitation may be the gut
microbiome, which is constantly producing chemical messengers and
other substances while potentially undergoing shifts in the ratios of its
bacterial community [7,10,18,30,31]. Thus, one of the stressors may
induce a state of inappropriate activation on a wide scale based on the
numbers and kinds of bacteria present.

Conclusion
Recently, the hypothesis concerning the origination of autism has

been expanded to include mitochondria, which is quite compelling in
its ability to add to the explanation of the causes of the multitude of
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widespread behavioral characteristics that occur in this disorder, as
well as other psychiatric disorders [1,15-17]. Mitochondrion
involvement represents an important eukaryotic cellular organelle
involved with generating ATP, powering the cell’s many reactions,
normally without abrupt interruptions [15,17,25,26,32-34]. It is
surmised that mitochondrial dysfunction, when it occurs, targets the
CNS because of its intrinsic level of oxygen utilization, which allows
for a rapid presentation of altered behavior. In so doing, diverse
negative stimuli, e.g., trauma, antibiotics, hypoxia, etc., would damage
neurons initiating neural and neuroimmune disorders, e.g., autism.
Again, this could be done by gut microbiome alterations, which
activate white blood cells, e.g., macrophages [13]. Indeed, if genetic
susceptibilities are present, the target becomes more specific, as
opposed to a more diffuse manifestation of a disorder. Given the
universal presence of mitochondria at high levels in the CNS, it
provides for a credible explanation for the complications and
characteristics that emerge in autism [16,17]. We and others have
recently surmised that there are very common links in specific
disorders (Alzheimer’s, Type 2 diabetes, atherosclerosis
[6,17,21,35-37]), which can be centered around critical events, e.g.,
proinflammation, hypoxia, all of which can be found to involve energy
metabolism, including gut microbial processes. This may be why
behavioral manifestations of the disorder emerge, since they require
high energy levels to sustain normal function. In essence, behavioral
abnormalities of a particular kind, as noted earlier, serve as diagnostic
indicators because they are at the forefront of the energy output
processes. Further, this level of gut influence over bodily functions
occurs because of the sheer number of bacteria and diverse bacteria,
which taken together provides for a “strong” message to immune and
neural cells. Here again, the macrophage may be central to this
communication since being abnormally stimulated and releasing
chemical messengers at the wrong time would evoke behavioral
anomalies [13].

Figure 1: Inappropriate Immune Stimulation by Altered Gut
Microbiome. The figure depicts normal communication via
vascular conduits. In this hypothetical model perturbation of the
gut microbiome by numerous stressors, which have this potential,
may result in enhanced excitation of white blood cells especially the
macrophage, which penetrates many tissues and has the potential
to become its “citizen”. Under stressor influences the level of these
excitation increases thereby adding activated immune cells into the
tissue load. This excitation causes the release of proinflammatory
chemical messengers in greater quantities, inappropriately further
stimulating tissues. The brain is acutely sensitive to this penetration
and stimulation because of its high level of energy metabolism.
Which may therefore, alter mitochondrial processes. Inset a.
depicts a normal barrier whereby vascular endothelial cells are
touching, completing the lining of the vasculature. Inset b depicts
alteration of the vasculature via immune cell penetration through
gaps in the lining. The gaps can be caused by activated immune
cells and their proinflammatory messengers. This environment can
regionally stimulate microglia to enter into the ever expanding
micro environmental disturbance, altering oxygen flow. This, in
turn, may cause mitochondrial dysfunction, causing the
progression to affect behavior, since this activity requires much
energy.
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