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Introduction
Some complex common diseases are vaguely defined and are 

more properly referred to as syndromes, i.e., sets of medical signs and 
symptoms without a defined or distinct etiology. Many of these common 
diseases are likely a collection of disease subtypes that require different 
diagnostics and treatments [1,2]. Lower urinary tract dysfunction 
(LUTD) is a good example.

The presence and severity of urinary symptoms is largely subjective 
and may be the result of a multitude of pathological processes [3]. 
Therefore, classification based solely on the predominant symptoms 
may be unsatisfactory and needs to be complemented by unbiased 
(objective) classification based on molecular signatures, i.e., groups 
of the differentially abundant proteins. Classification based on 
biomarker signatures rather than clinical symptoms is expected to 
reflect molecular mechanisms of the subtypes of the disease and to 
lead to more targeted and successful interventions. The initial goal 
of this study was very practical: to estimate the required sample size 
(number of patients) and to choose an algorithm for the unsupervised 
classification of patients in a biomarker study that is part of the large 
NIH-funded collaborative study Symptoms of Lower Urinary Tract 
Dysfunction Research Network (LURN). There are no established 
methods to estimate sample size in unsupervised classification (unlike 
power analysis in hypothesis testing). Therefore, we developed an 
approach to estimate misclassification error given an expected number 
of differentially abundant proteins, number of disease subtypes, effect 
size, and number of patients in the study. An appropriate sample size 
would give a low misclassification error, such as 5%, for a desired effect 
size for over a reasonable range of other parameters.

Many unsupervised classification methods exist [4] including 

k-means clustering, fuzzy k-means clustering, hierarchical clustering,
principal component analysis (PCA), nonlinear component analysis,
independent component analysis, multidimensional scaling, and self- 
organizing maps. Recently, this group of methods was complemented
by an even more sensitive classification technique called topological
data analysis [5], which proved to be useful in a broad range of
multidimensional data analysis applications ranging from detection of
subtypes of breast cancer [6] to exploring the states of folding pathways 
of biopolymers [7], and even classification of the voting patterns of
the members of the US House of Representatives [8]. However, none
of the classification methods is ideal in all settings and the optimal
choice of the method depends on the properties of the underlying
data. Comparison of the performance of the unsupervised algorithms
is not straightforward when analyzing real data with unknown class
membership (unlabeled data). Several criteria need to be considered
when comparing algorithms, including: ratio of the between-cluster
variance and within-cluster variance, robustness of classification to the
removal of random members of the population, robustness to missing
data. The situation is much simpler in the case of simulated data, where 
true class membership is determined a priori and the misclassification
error, i.e., ratio of the number of objects wrongly classified to the total
number of objects in the dataset, can be easily calculated.
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A recent review of the multivariate statistical methods used in 
proteomics [9] demonstrated that the most popular unsupervised 
classification methods in proteomics studies were PCA and 
hierarchical clustering, which were used in 19 and 7, respectively, 
out of 26 reviewed proteomics papers (see Table 2 of reference [9]). 
Strictly speaking, PCA is not a classification method, but a method to 
visualize multidimensional data by projecting it on new axes - principal 
components, i.e., the orthogonal uncorrelated linear combinations 
of the original variables, where the first and each of the following 
orthogonal principal components account for as much of the variability 
in the data as possible. Most proteomics papers using PCA present 
cases where the separation of the groups is visible in scatter plots of 
one component versus another; however, the degree of separation is not 
quantified and therefore the results remain qualitative and difficult to 
assess, especially when the separation is far from perfect.

In this paper, we compare three commonly used clustering 
methods: hierarchical, k- means, and k-medoids, which unlike PCA 
provide quantitative results for class memberships, and therefore allow 
comparison even in the case of poor separation. We illustrate our method 
for the case of targeted proteomics studies, where all of the measured 
proteins are known to be relevant to disease pathways and the missing 
data is much less prevalent than in the case of shotgun proteomics. As 
an example, we simulated the data that we expect from the study of 
plasma of patients with lower urinary tract dysfunction (LUTD) using 
the aptamer proteomics assay Somascan (SomaLogic Inc, Boulder, CO), 
which targets 1129 proteins, including 330 involved in inflammation, 
300 in signal transduction, 190 in cardiovascular diseases, 180 in stress 
response, 80 in aging, 70 in renal diseases, with a few proteins in more 
than one category. LUTD is known to be related to inflammation, stress, 
and aging. Therefore, we expect a substantial number of these proteins 
to be differentially abundant in LUTD subtypes.

It is typical for proteomic studies to demonstrate a large number of 
differentially abundant proteins in cases versus controls. For example, 
44 serum proteins were found significantly differentially abundant in 
the SomaScan study of 51 patients with Duchenne muscular dystrophy 
versus 17 age matched controls [10], 248 differentially abundant proteins 
were observed in the SomaScan study of CSF of patients with age-
related neurodegeneration versus controls [11], and 239 significantly 
differentially abundant proteins were observed in the SomaScan study 
of serum of 39 patients after 8 weeks of pulmonary tuberculosis 
treatment relative to the baseline  [12]. Similarly in shotgun proteomics, 
116 differentially abundant proteins were identified in chronic 
pancreatitis versus controls [13], synchronous dynamics of abundances 
over time of about 90 proteins was observed reflecting both short- and 
long-term effects of leptin-replacement therapy [14] and 197 proteins 
were shown to be significantly differentially abundant in Alzheimer’s 
disease versus control brain samples [15]. Recently, classifiers were 
developed based on the presence of differentially abundant proteins and 
naturally occurring peptides in urine: a classifier of stroke contained 
31 biomarkers [16] and a classifier of chronic kidney disease had 273 
biomarkers [17]. Therefore, we expect that the biomarker signatures 
defining the subtypes of diseases can contain substantial number of 
differentially abundant proteins involved in up- or down-regulated 
pathways.

Figure 1 provides the schematic representation of our analysis. 
Protein abundances were simulated given the number of patients P, 
number of proteins in the assay N, number of patient clusters K, list of 
class membership L, number of biomarkers in the signature M, effect 
size Eff, and correlation matrix of protein abundances R. Then, three 

clustering algorithms were used to cluster patients in the simulated data 
(true L unknown to the clustering algorithms). Finally, lists of class 
memberships predicted by the algorithms were compared with the true 
class membership L and misclassification error rate was calculated. 
Input parameters P, N, K, M, Eff as well as structure of correlation 
matrix and values of correlation coefficients were varied.

Methods
Clustering algorithms

All the simulation experiments were performed in silico. Clustering 
algorithms were used as implemented in MATLAB 2015a Statistics 
and Machine Learning Toolbox functions: clusterdata.m, kmeans.m 
and kmedoids.m. Function evalclusters.m from the same toolbox was 
used to evaluate quality of clustering by using four criteria: Calinski-
Harabasz [18], Davies- Bouldin [19], Gap [20], and Silhoutte [21]. The 
description of the functions can be found in MATLAB documentation. 
Briefly, function clusterdata.m performs agglomerative hierarchical 
cluster analysis on a data set by the following procedure: distance 
between all data points is calculated, pairs of data points are linked that 
are in the closest proximity; then, as data points are paired into binary 
clusters, the newly formed clusters are grouped into larger clusters 
until a hierarchical tree is formed; finally, decision is made on where 
to ‘draw the horizontal line’ and cut the hierarchical tree into clusters. 
Function kmeans.m uses an iterative algorithm that minimizes the sum 
of distances from each data point to its cluster centroid, over all clusters. 
This algorithm moves data points between clusters until the sum cannot 
be decreased further. Similar to k-means, k-medoids is a partitioning 
method that is used in cases that require robustness to outlier data. 
Importantly in k-medoids, centroid is always one of the actual data 
points of the cluster. See more on comparison of hierarchical clustering, 
k-means and k- medoids in the Results section.  Function evalclusters.m 
implements the above four criteria of cluster quality defined in [18-21] 
and described in MATLAB documentation. Briefly, Calinski- Harabasz, 
Davies-Bouldin and Silhoutte compare between cluster variances with 
within cluster variances and differ by the way these variances are defined. 
In addition, Calinski-Harabasz criterion penalizes the case where the 
number of clusters is high and commensurate with the number of data 
points in the dataset. Gap criterion is more computationally intense 
since it compares the within cluster dispersion with the expected value 
of within cluster dispersion for the reference distribution.

Simulated datasets

Simulated datasets were matrices of log-transformed protein 
abundances: A

ik
=log(abundance of the ith protein in the kth patient’s 

sample), where i=1…N and k=1…P. Protein abundances were assumed 
to be distributed log-normally. A log-normal process is the statistical 
realization of the multiplicative product of many independent random 
variables, each of which is positive, which is in line with the observation 
that distributions of omics measurements are satisfactorily described by 
log-normal distributions, since multiplicative regulatory mechanisms 
are causally dominant in biological systems [22]. Importantly, protein 
abundances might vary in plasma by 9 orders of magnitude, but are 
obviously always positive, which is better described by the log-normal 
than by the normal distribution. Protein abundances were assumed to 
be measured by SomaScan, or by some other targeted (e.g. multiple 
reaction monitoring) proteomics technique. Therefore, we assumed 
the absence of missing data, which is typical for targeted proteomics 
in contrast with shotgun proteomics, where missing data are quite 
prevalent. Biological variability of the patients as well as possible 
measurement errors were represented by simulating the logarithms 
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of protein abundances as random numbers with multivariate normal 
distribution generated with MATLAB function mvnrnd.m. For the 
reasons explained in the next section, abundances of the proteins 
were not considered to be independent, and therefore non- diagonal 
correlation matrices were used in the mvnrnd.m function to represent 
these dependencies. An example of the simulated dataset is available as 
a supplementary file.

Correlation of protein abundances

Proteins in the targeted proteomics assays are usually selected to 
represent some important processes, pathways, or diseases. Some 
of these proteins can participate in the same pathways and/or can be 
regulated by the same transcription regulation factors. Abundances 
of these proteins are not independent and were therefore simulated as 
correlated variables. We anticipated that the values of the correlation 
coefficients and the structure of the correlation matrix could affect the 
ability of the clustering methods to classify data. The limiting case of 
total/complete correlation Rij=1, for all i and j (i=1…N, j=1…N are 
protein indices) is obvious, since it reduces the protein panel to a single 
biomarker, which is clearly a less powerful classifier than the biomarker 
panel. To evaluate the effect of the correlation of protein abundances, 
we examined two types of the correlation matrices. In the first case, 
we assumed that the protein assay could be simulated as a collection of 
non-overlapping groups of proteins. Correlation between the pairs of 
proteins within the group was equal to R; correlation with the proteins 

outside the group was zero. We call this correlation structure ‘within 
group’ correlation. In the second case, we assumed that all the proteins 
in the assay are correlated but to a decreasing extend as the indices 
are farther apart. We simulated the correlation matrix as i- j

ij = RR
, i.e., R11=1, R12=R21=R, R13=R31=R2, etc. For brevity we will call it the 
‘among neighbors’ correlation. Clearly, these two cases do not cover 
all the possible combinatorial complexity of the protein abundance 
interdependences, but provide the way to compare the effects of various 
types of correlation on the classification capability of the algorithm.

Biomarker signatures

Following the same spirit of reducing of the combinatorial 
complexity of possible structures of the biomarker signatures, we 
simulated the two limiting cases of totally non- overlapping and totally 
overlapping biomarker signatures of the subtypes of the disease. We 
assumed that the disease of interest has K subtypes which are present in 
the population of patients. So the simulated number of clusters was K. 
In the first case, we assumed that each of the clusters is represented by 
a signature of M differentially abundant proteins and that this signature 
does not overlap with the signatures of any other patient clusters, 
meaning that these M proteins are differentially abundant only in one of 
the patient clusters, while in the other patient clusters the abundance of 
these proteins is similar to those of control subjects. In the second case, 
we assumed that there were only M differentially abundant proteins in 
the whole protein abundance matrix and that the difference between 
the signatures of the patient clusters was in the sign of the differential 
abundance for each particular protein. Therefore, each of the cluster 
signatures was represented as the M-long sequence of “+” and “-”.

Standardization of proteins abundances

One of the important choices in unsupervised classification is 
whether to standardize or not to standardize the variables. As described 
in [23], the problem with unstandardized data is the inconsistency 
between cluster solutions when the scale of variables is changed, which 
is a strong argument in favor of standardization. The common form 
of conversion of the variables to standard scores (or z-scores) entails 
subtracting the mean and dividing by the standard deviation for each 
variable (protein). However, standardization defined in this way is 
not suitable for our task of defining disease subtypes. Subtracting the 
overall mean and dividing by the overall standard deviation ignoring 
whether it is caused by the natural biological variability of the patients 
or by the differences in the disease subtypes would mask the subtype 
differences. The solution to this problem is standardization by the 
mean and standard deviation of the control subjects group, who do 
not have the disease of interest.  Following this approach, we defined 
standardized variables as:

ik ik ic icz = (A - A ) / σ 				                  (1)

where Aic and σic – mean and standard deviation of the log(abundances) 
of the ith protein in the control group.  Assuming that the standard 
deviations of log(abundances) within each disease subtype are similar 
to the standard deviation within the control group, we can now simulate 
standardized log(abundances) as normal distributions with standard 
deviation equal to 1 with mean equal to: 

ij ij ij ic icEff = z = (A - A ) / σˆ 			                   (2)

where îjA  the average log(abundance) of protein i across all the patients 
belonging to the cluster (disease subtype) j. By analogy with the usual 
power analysis we can call the difference in the mean log(abundance) of 
the given protein in cluster j and the mean log(abundance) of the same 

Figure 1: Schematic representation of the analysis. Analysis involves three parts. First, simulate data based on the following inputs: P-number of patients, N-number of 
proteins in the assay, K- number of patient clusters, L –list of class membership with P elements, where each element Li (i=1,2,…P) is an integer q=1,2,…K. Other inputs 
are: M – number of differentially abundant proteins (candidate biomarkers), Effnq- effect size (could be different for each protein n and each cluster q), R- correlation matrix 
of protein abundances. Second, use simulated data as an input to the clustering algorithms (in this paper: hierarchical clustering, k-means, and k-medoids). Third, compare 
lists of class memberships L(r) r=1,2,3 generated by the clustering algorithms with the true list of class membership L; determine misclassification error rate. Vary inputs, 
e.g. Eff and P, repeat the whole procedure, create plots of misclassification error vs. Eff. Determine the threshold value of effect size which enables misclassification error 
below 5% for the given number of patients P, or determine the number of patients (sample size of the future study), which enables misclassification error below 5% for the 
given expected Eff. See detailed explanation in the text.

Figure 1: Schematic representation of the analysis. Analysis involves three 
parts. First, simulate data based on the following inputs: P-number of patients, 
N-number of proteins in the assay, K- number of patient clusters, L –list of 
class membership with P elements, where each element Li (i=1,2,…P) is an 
integer q=1,2,…K. Other inputs are: M – number of differentially abundant 
proteins (candidate biomarkers), Effnq- effect size (could be different for each 
protein n and each cluster q), R- correlation matrix of protein abundances. 
Second, use simulated data as an input to the clustering algorithms (in this 
paper: hierarchical clustering, k-means, and k-medoids). Third, compare lists 
of class memberships L

(r) 
r=1,2,3 generated by the clustering algorithms 

with the true list of class membership L; determine misclassification error 
rate. Vary inputs, e.g. Eff and P, repeat the whole procedure, create plots 
of misclassification error vs. Eff. Determine the threshold value of effect 
size which enables misclassification error below 5% for the given number 
of patients P, or determine the number of patients (sample size of the future 
study), which enables misclassification error below 5% for the given expected 
Eff. See detailed explanation in the text.
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protein in the control group ‘effect size’ and simulate misclassification 
error for the given effect size, number of patients, and number of 
differentially abundant proteins. By setting the misclassification 
error at some level, e.g. 5% we can estimate the required effect size 
given the sample size (number of patients), or the required sample 
size for the expected effect size Effij and the number of differentially 
abundant proteins, i.e., generate sample size estimates similar to the 
classical power analysis.  An important difference from the classical 
power analysis, however, is multidimensionality. In our case, we may 
have multiple differentially abundant proteins and multiple clusters, 
i.e., the effect size Effij depends on i and j. This creates combinatorial 
complexity, e.g. effect size equal 1 for protein i in cluster j and effect size 
of 0.5 for protein k in cluster m, etc. For simplicity and because we have 
no prior information about effect sizes, we assume equal effect size for 
all differentially abundant proteins and zero effect size for the rest of 
the proteins. This assumption could be changed if information on effect 
sizes became available.

Below we demonstrate the results of the described simulations for 
several settings: three popular clustering methods, various numbers of 
biomarkers and disease subtypes, two correlation structures, and three 
levels of correlation between the assayed proteins. Although the settings 
used here are simplified versions of the true unknown associations and 
effects, by exploring a range of likely scenarios, the simulation results 
can provide useful guidance and estimates for the more complex real 
life situations. We used misclassification error as a main metrics for 
evaluating the quality of classification for the above various methods 
and conditions. Misclassification error was calculated by comparing 
the class membership predicted by the classification methods with 
the known class membership in the simulated data. Misclassification 
error was evaluated by the ‘in house’ developed function estmisclrate.m 
available as supplementary file.  Initially (Figures 2-10), we explored 
and compared the properties of the clustering algorithms when the 
information on the true number of clusters (subtypes of disease) is 
known to the algorithm while the class membership is unknown, and 
then we explored the more complex case (Figure 11) where the number 
of the clusters is unknown and determined by the clustering algorithms.

Results
The log(abundances) of 1129 proteins for a cohort of 100 virtual 

patients were simulated assuming 5 clusters of patients with equal size 
(20 patients in each). The effect size, i.e., the difference between the mean 
log(abundance) of the biomarker in the disease and control, varied from 
0.2 to 4 (i.e., from 0.2 standard deviations to 4 standard deviations). 
Each simulation was performed at least 12 times (with different seeds 
generating different random distributions of protein abundances using 
the mvrnd.m function) and the average misclassification error was 
calculated.

Correlation of abundances within protein groups. Non-
overlapping biomarker signatures

First we examined the case where the correlation between the protein 
abundances existed only within certain groups. We simulated it by 
assuming that all 1129 proteins can be divided into groups of 5 (actually 
the last group had only 4) members. Abundances of the proteins within 
the groups were correlated with the correlation coefficient R, while the 
abundances outside of the groups were not correlated.

Initially we studied the case of non-overlapping biomarkers 
signatures, where each cluster (disease subtype) is characterized by its 
own M differentially abundant proteins non- overlapping with other 

M differentially abundant proteins of another cluster. Figure 2 presents 
the comparison of misclassification errors generated by 3 clustering 
methods: hierarchical, k- means, and k-medoids (all with the default 
settings of MATLAB 2015a). Figures 2A-2C illustrate the case where 
the number of biomarkers in the signature M=40, while Figure 2D-2F 
illustrate the case of 4-fold higher number of biomarkers M=160. Figures 
2A and 2D present the case of nearly zero correlation of the proteins, 
while Figures 2B and 2E present moderate correlation R=0.45, and 
Figures 2C and 2F strong correlation (R=0.9) of the protein abundances 
within the group of 5. In all 6 cases, hierarchical clustering generated a 
misclassification error rate of almost 80% until reaching a high effect 
size of 2.2 (M=40, Figures 2A-2C) and 1.2 (M=160, Figures 2D-2F). 
Note that with 5 clusters of equal size, the misclassification error of 80% 
(or the 20% correct classification) corresponds to classification by pure 
chance; therefore hierarchical clustering seems useless when the effect 
size is below a threshold value (2.2 where M=40 and 1.2 where M=160). 
However, for the larger effect sizes (above thresholds) hierarchical 
clustering generates nearly perfect classification. Misclassification 
error is lower and, therefore, classification is better with the k-medoids 
method for all effect sizes; classification thresholds being at effect size 
2.0 for M=40 and effect size 1.0 for M=160. The slight increase of 
misclassification error in the setting of strong correlation of ‘within 
group’ protein abundances is visible when comparing k-medoids curves 
in Figures 2A and 2C.

The most interesting effect revealed in Figure 2 is the behavior 
of the misclassification error rate for the k-means method, which 
is substantially lower than for hierarchical and k-medoids methods 
for small effect sizes, but fluctuates around 10% level for large effect 
size, where both hierarchical and k-medoids methods provide ideal 
classification. This unexpected behavior of k-means method for the 
large effect size required further examination, which is described below.

What is wrong with k-means and how to fix it?

Figure 3 demonstrates our efforts to better understand the results of 
the k-means method as applied to our datasets. First, we increased the 
number of virtual patients from 100 to 500, hoping that larger sample size 
could help to reduce the fluctuating misclassification error at large effect 
sizes; it did not work (Figure 3A). Then we reduced the total number of 
proteins in the simulated assay from 1129 to 500, assuming that it could 
reduce the noise level and therefore help to classify better; it did not 
work either (Figure 3B). The attempts to reduce error by changing the 
definition of distance from the default ‘euclidian’ to ‘correlation’ (Figure 
3C) and ‘city block’ (data not shown) failed as well; not surprisingly ‘city 
block’ distance resulted in much worse misclassification error both at 
small and large effect sizes. Simulating 2 patient clusters instead of 5 
resulted in the disappearance of the fluctuating misclassification errors 
(Figure 3D), however, adding one more patient cluster (Figure 3E) 
resulted in the return of this type of error at large effect size.

The problem of the fluctuating error of k-means was solved 
by looking into the details of the algorithm and comparing it with 
hierarchical clustering and k-medoids. Hierarchical clustering 
algorithm is deterministic and produces the same results every time 
it is run on the same data. On the contrary, k-means is a stochastic 
algorithm and its results depend on the seeds – the initial randomly 
chosen centroids of the clusters, which could be unfortunate and lead 
to the errors in clustering. k-medoids is similar to k-means; however 
in k-medoids, the centroid (called medoid) is always one of the actual 
data points of the cluster, which makes algorithm more robust and less 
dependent on initial choice of the seeds. On the other hand, at least for 
the data sets that we simulated, k-medoids typically resulted in a higher 
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Figure 2: Comparison of misclassification errors generated by three clustering algorithms: hierarchical, k-means, and k-medoids. Cohort of 100 simulated patients 
consists of 5 clusters (subtypes of disease) of equal size. Protein assay includes 1129 target proteins. Protein abundances are correlated ‘within groups’ of five. Case 
of non-overlapping biomarker signatures. Misclassification error=0 - means all the simulated patients are classified correctly. Misclassification error=0.8 – means only 
20% of patients are classified correctly. In case of 5 clusters, this is the classification that occurs due to pure chance. Figures 2A-2C –M=40 biomarkers in the signature. 
Figures 2D-2F –M=160 biomarkers in the signature.  Figures 2A and 2D – correlation coefficient R=0.0001, Figures 2B and 2E – R=0.45, Figures 2C and 2F – R=0.9. 
Here and everywhere below, each point is an average of 12 simulations.

Figure 3: Solving the ‘puzzle of k-means behavior’. Attempts to reduce misclassification errors generated by k-means at large effect sizes (see oscillations around 
10% error rates in Figure 2). Figure 3A- number of patients increased from 100 to 500; 3B- number of proteins reduced from 1129 to 500; 3C- correlation distance 
used instead of Euclidian distance; 3D – number of patient clusters reduced from 5 to 2; 3E- number of patient clusters=3; 3F-K- means settings are changed from 
default (no replicates) to 5 replicates – problem solved.
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misclassification error than k-means (see Figures 2-6). Luckily, the 
k-means algorithm as implemented in MATLAB has an option of using 
‘replicates’, i.e., repeat clustering multiple times using new seeds - initial 
cluster centroid positions and then selecting solution with the minimum 
value of within cluster sum of distances from points to centroid. Using 
this option with 5 replicates (instead of the default without replicates) 
dramatically reduced the fluctuating misclassification error (Figure 3F). 
Based on these results, k-means algorithm with 8 replicates was used 
in all the rest of the simulations of this paper. This was an important 
lesson not to rely on default settings of the algorithm, but examine and 
optimize its properties for the specific analytical problem. As obvious 
from Figures 2 and 3F, k-means algorithm with replicates proved to 
be the best among three classification methods for our simulated data. 
As shown below, the same was right for the overlapping biomarker 
signatures and another structure (‘among neighbors’) of the correlation 
matrix.

Correlation of abundances within protein groups, overlapping 
biomarker signatures

Having solved the ‘puzzle of the k-means behavior’, we moved to 
the simulation of the case of overlapping biomarker signatures. Here, 
we assumed that there were only M differentially abundant proteins in 
the whole protein abundance matrix and that the difference between 
the signatures of the patient clusters was in the level of abundance 
for each of the M differentially abundant proteins. In order to reduce 
combinatorial complexity of all possible combinations of effect sizes 
for M proteins, we assumed that the effect size for all the differentially 
abundant proteins was equal (as described in the end of the Methods 
section). Therefore, the logarithms of abundances of the up-regulated 

proteins were simulated as having effect size +Eff, while logarithms of 
abundances of down-regulated proteins were described with negative 
effect size –Eff. Even with this simplification, the number of possible 
distinct signature is then equal to 2M since each of the differentially 
abundant proteins can be either up- or down- regulated. To simulate 
the expected number of disease subtypes (e.g. 5 as in previous section) 
we do not need this large number of signatures, so we assumed that 
M biomarkers are divided into 3 groups of uniformly up- or down-
regulated proteins so that the max number of signatures is equal to 23 
and can be represented as sequence of pluses and minuses, e.g. +++, ---
,++-, -+-, etc. Figure 4 represents the dependence of the misclassification 
error for the case of overlapping biomarker signatures described above. 
The structure of the figure is the same as Figure 2, i.e., it presents the 
comparison of 3 clustering methods. Figures 4A-4C deal with the case 
of M=40, while in Figures 4D-4F, M=160; Figures 4A and 4D present 
the case of no correlation, Figures 4B and 4Ee – moderate correlation 
R=0.45, and Figures 4C and 4F – strong correlation R=0.9. Note that 
correlation of protein abundances is simulated in the same way as for 
non-overlapping biomarkers (Figure 2). Comparison of Figures 2 and 4 
shows that in both cases k-means is the best and hierarchical clustering 
is the worst in terms of misclassification error. Even the presence of very 
strong (R=0.9) correlations in protein abundances within the groups of 
proteins (here 5 proteins in the groups) causes some but not substantial 
increase in the misclassification error with k-means clustering. The 
presence of overlap in the biomarker signatures (Figure 4 versus Figure 
2) causes some increase of misclassification error especially in case of 
low number of biomarkers M=40 (Figures 4A-4C versus Figure 2A-2C). 
The k-means algorithm seems to be the most robust to correlations and 
overlap in biomarker signatures and provide the misclassification error 
below 5% at effect size>1.2 for M=40 and at effect size >0.7 for M=160.

Figure 4: Comparison of misclassification error rates generated by three clustering algorithms: hierarchical, k-means and k-medoids. Cohort of 100 simulated 
patients (5 clusters of equal size). Protein assay includes 1129 target proteins. Protein abundances are correlated ‘within groups’ of five. Case of completely 
overlapping biomarker signatures. Signatures of the clusters (disease subtypes) differ by the signs of the effect (up- or down-regulation of the proteins). See details 
in the text. Figures 4A-4C– M=40 biomarkers in the signature. Figures 4D-4F– M=160 biomarkers in the signature. Figures 4A and 4D– correlation coefficient 
R=0.0001, Figures 4B and 4E– R=0.45, Figures 4Cand 4F– R=0.9.
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Figure 5: Comparison of misclassification error rates generated by three clustering algorithms: hierarchical, k-means, and k-medoids. Cohort of 100 simulated patients (5 clusters of equal size). Protein assay includes 1129 target proteins. Protein abundances are 
correlated ‘among neighbors’ - Rij=R|i-j|. Case of non-overlapping biomarker signatures. Figures 5A-5C– M=40 biomarkers in the signature. Figures 5D-5F– M=160 biomarkers in the signature. Figures 5A and 5D– correlation coefficient R=0.0001, Figures 5B and 
5E– R=0.45, Figures 5C and 5F– R=0.9.

Figure 5: Comparison of misclassification error rates generated by three clustering algorithms: hierarchical, k-means, and k-medoids. Cohort of 100 simulated 
patients (5 clusters of equal size). Protein assay includes 1129 target proteins. Protein abundances are correlated ‘among neighbors’ - Rij=R

|i-j|
. Case of non-

overlapping biomarker signatures. Figures 5A-5C– M=40 biomarkers in the signature. Figures 5D-5F– M=160 biomarkers in the signature. Figures 5A and 5D– 
correlation coefficient R=0.0001, Figures 5B and 5E– R=0.45, Figures 5C and 5F– R=0.9.

Figure 6: Comparison of misclassification error rates generated by three clustering algorithms: hierarchical, k-means, and k-medoids. Cohort of 100 simulated patients (5 clusters of equal size). Protein assay includes 1129 target proteins. Protein abundances are correlated ‘among neighbors’ - Rij=R|i-j|. Case of completely 
overlapping biomarker signatures. Signatures of the clusters (disease subtypes) differ by the signs of the effect (up- or down-regulation of the proteins). See details in the text. Figures 6A-6C- M=40 biomarkers in the signature. Figures 6D-6F– M=160 biomarkers in the signature.  Figures 6A and 6D– correlation coefficient 
R=0.0001, Figures 6B and 6E– R=0.45, Figures 6C and 6F– R=0.9.Figure 6: Comparison of misclassification error rates generated by three clustering algorithms: hierarchical, k-means, and k-medoids. Cohort of 100 simulated 

patients (5 clusters of equal size). Protein assay includes 1129 target proteins. Protein abundances are correlated ‘among neighbors’ - Rij=R
|i-j|

. Case of completely 
overlapping biomarker signatures. Signatures of the clusters (disease subtypes) differ by the signs of the effect (up- or down-regulation of the proteins). See details 
in the text. Figures 6A-6C- M=40 biomarkers in the signature. Figures 6D-6F– M=160 biomarkers in the signature.  Figures 6A and 6D– correlation coefficient 
R=0.0001, Figures 6B and 6E– R=0.45, Figures 6C and 6F– R=0.9.
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Among neighbors protein abundance correlation. Non-
overlapping biomarker signatures

Next we examined the case, where abundances of all the proteins 
are to some extend correlated and are the strongest for the nearest 
neighbors, i.e., i- j

ij = RR , as described in the Methods section. 
Figure 5 presents misclassification errors in case of this type (‘among 
neighbors’) of the correlation matrix and non-overlapping biomarker 
signatures. Comparison with the case of non-overlapping biomarker 
signatures and ‘within groups’ correlation of protein abundances 
(Figure 2), demonstrates that the ‘among neighbors’ correlation causes 
higher misclassification errors especially in the case of relatively low 
number of biomarkers M=40 (compare Figure 5B with Figure 2B, 
and Figure 5C with Figure 2C). Nevertheless, the k-means algorithm 
enables misclassification errors below 5% at effect size>1.2 for M=40 
and R=0.45 and at effect size>2.2 for M=40 and R=0.9. In case of large 
number of biomarkers M=160, the difference of ‘among neighbors” 
and ‘within group’ correlations are less dramatic (compare Figure 
5E with Figure 2E, and Figure 5F with Figure 2F); k-means enables 
misclassification error below 5% at effect size>1.2. Note that k-means 
algorithm enables much lower misclassification errors than k-medoids 
and especially hierarchical clustering algorithm. Hierarchical clustering 
algorithm generates especially high misclassification errors when 
correlation is high R=0.9, even for quite high effect sizes of 4 (M=40, 
Figure 5C) and 2.3 (M=160, Figure 5F).

Among neighbors protein abundance correlation, overlapping 
biomarker signatures

Finally, we examined the case of overlapping biomarker signatures 
and ‘among neighbors’ protein abundance correlation (Figure 6). 
Similar to the rest of the examined cases, the k-means algorithm 
resulted in the lowest misclassification errors. High ‘among neighbors’ 
correlation resulted in the larger deterioration of performance than high 
‘within group’ correlation especially in case of relatively low number of 
biomarkers M=40 (compare Figures 4A, 4C and 6C).

All cases k-means comparison

As shown, k-means algorithm with 8 replicates behaved better than 
hierarchical clustering and k-medoids for all 4 cases simulated above. 
Therefore it is of interest to concentrate on k-means and compare 
misclassification errors generated by this algorithm in the above 4 cases. 
Figure 7 presents this comparison. Obviously, the higher the effect size 
and the higher the number M of the biomarkers in the signature, the 
lower the misclassification error.

The presence of the overlap of biomarker signatures and the presence 
of correlation of protein abundances deteriorates the classification 
accuracy. However, the extend of deterioration is quite small when the 
correlation is low or the number of biomarkers is high M=160 (Figures 
7A, 7D and 7E). Deterioration due to overlap and correlation is visible 
(1.5 versus 1.0 effect size threshold) when the number of biomarkers in 
the signature is not that high M=40 and their abundances are moderately 
correlated R=0.45 (Figure 7B). High correlation R=0.9 is much more 
detrimental in the case of ‘among neighbors’ correlation than in case 
of ‘within group’ correlation and results in roughly doubled effect size 
threshold both for M=40 (Figure 7C) and M=160 (Figure 7Ff) both in 
the presence or absence of biomarker signatures overlap. Also, Figure 
7 illustrates that the case of protein abundance correlation within the 
group of 10 proteins (black dotted line) is practically indistinguishable 
from the case of correlation within the group of 5 proteins (black solid line).

Figure 8 illustrates how the number of biomarkers in the signature 
influences the threshold value of the effect size which enables 
misclassification error below 5% for k-means algorithm. Obviously, 
the higher the number of the biomarkers in the signature the lower 
the threshold effect size required to enable misclassification error 
better than 5%. The value of the threshold effect size depends on the 
correlation of protein abundances. For low and moderate correlations 
of protein abundances, the discussed above 4 cases (‘overlap’ versus 
‘non-overlap’ and ‘within group’ versus ‘among neighbors’) demonstrate 
similar dependences decreasing from 1.3-1.8 for M=20 to 0.65-
0.53 for M=160 for all 4 cases (Figures 8A and 8B). However, if the 
correlation of protein abundances is high, cases of ‘within group’ and 
‘among neighbors’ correlations differ dramatically (Figure 8C). In case 
of ‘within group’ correlations threshold effect size values are similar 
to those at Figures 8A and 8B, while in case of the ‘among neighbors’ 
correlations the threshold effect size values are about two-fold higher.

Then we analyzed the ‘worst case scenario’, i.e., overlapping 
biomarker signatures with ‘among neighbors’ correlation of protein 
abundances, in more detail. For this case, Figure 9 presents the 
comparison of misclassification errors generated by k-means algorithm 
versus the effect size for the various number of patients P=100, 200, 500, 
1000 (Figures 9A-9C), various number of proteins in the panel N=250, 
500, 1000, 2000 (Figures 9D-9F), and various number of patient clusters 
or subtypes of disease (Figures 9G-9I). The number of biomarkers in 
the signature is fixed M=40, and the correlation differs from R=0.0001 
(Figures 9A, 9D and 9G) to R=0.45 (Figures 9B, 9E and 9H) to R=0.9 
(Figures 9C, 9F and 9I). Misclassification error is lower the higher the 
effect size. For the given effect size misclassification error is higher 
the higher the correlation between protein abundances, the lower the 
number of patients, the higher the total number of proteins in the panel, 
and the higher the number of patient clusters (subtypes of disease). 
Importantly, these differences tend to disappear at the effect size above 
the threshold value, which depends on all the above parameters. Figure 
10 demonstrates how the effect size threshold value enabling better 
than 5% misclassification error changes with the number of patients, 
number of proteins in the panel, number of patient clusters, and the 
correlation coefficient. Increasing the number of patients helps to 
decrease the threshold effect size but not dramatically, i.e., 10-fold 
increase in the number of patients lead to about 25% decrease in the 
value of the threshold effect size. Similarly, decreasing the number of 
proteins in the panel from 1000 to 200 will lead only to 20% decrease in 
the threshold value, while decrease in the number of patients’ clusters 
from 5 to 2 leads to about 25-30% decrease in the threshold effect size. 
The most substantial difference in the threshold value is due to the 
correlation of protein abundances (compare black, blue, and red curves 
in Figure 10). The higher the correlation the higher the threshold effect 
size which conforms with the dependences illustrated in Figures 8A-
8C, and is not unexpected since the increased correlation coefficient is 
equivalent to the decrease in the number of independent biomarkers 
in the signature (the extreme case of R=1 being equivalent to a single 
biomarker M=1).

On the determination of the right number of clusters

Above, we were dealing with the situation where the clustering 
algorithms were provided with the information on the true 
number of clusters in the simulated datasets. Then we evaluated the 
misclassification error of these algorithms given the effect size and 
several other parameters of the datasets. Unfortunately, in the real life 
situations the true number of clusters is not always known a priori. 
Several criteria exist to evaluate the quality of clustering, most of which 
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Figure 7: Misclassification error rates generated by k-means algorithm. Cohort of 100 simulated patients (5 clusters of equal size). Protein assay includes 1129 
target proteins. Comparison of 5 cases: (1)-non-overlapping signatures, correlation R within group of 5 proteins; (2)- non- overlapping signatures, correlation R 
within group of 10 proteins; (3)- completely overlapping signatures, correlation R within group of 5 proteins; (4)- non-overlapping signatures, ‘among neighbors’ 

correlation of proteins Rij=R
|i-j|

; (5)-completely overlapping signatures, ‘among neighbors’ correlation of proteins Rij=R
|i-j|

. Values of M and R are the same as 
in Figures 2, 4-6.

Figure 8: Threshold effect size enabling misclassification error below 5% versus the number M of biomarkers in the signature. K-means algorithm. Comparison of 4 cases: (1)-non-overlapping signatures, correlation R within group of 5 proteins; (2)- completely overlapping signatures, correlation R within group of 5 proteins; (3)- non-overlapping signatures, ‘among 
neighbors’ correlation of proteins Rij=R|i-j| ; (4)-completely overlapping signatures, ‘among neighbors’ correlation of proteins Rij=R|i-j|. Figure 8A- R=0.0001, Figure 8B– R=0.45, Figure 8C- R=0.9.Figure 8: Threshold effect size enabling misclassification error below 5% versus the number M of biomarkers in the signature. K-means algorithm. Comparison of 

4 cases: (1)-non-overlapping signatures, correlation R within group of 5 proteins; (2)- completely overlapping signatures, correlation R within group of 5 proteins; 

(3)- non-overlapping signatures, ‘among neighbors’ correlation of proteins Rij=R
|i-j| 

; (4)-completely overlapping signatures, ‘among neighbors’ correlation of 

proteins Rij=R
|i-j|

. Figure 8A- R=0.0001, Figure 8B– R=0.45, Figure 8C- R=0.9.
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Figure 9: Misclassification error versus effect size for various numbers P of the simulated patients in the cohort, various numbers N of proteins in the assay, and various numbers K of clusters of equal size in the cohort. K-means algorithm. M=40. 
R=0.0001 (Figures 9A, 9D and 9G), R=0.45 (Figures 9B, 9E and 9H) and R=0.9 (Figures 9C, 9F and 9I).Figure 9: Misclassification error versus effect size for various numbers P of the simulated patients in the cohort, various numbers N of proteins in the assay, and 

various numbers K of clusters of equal size in the cohort. K-means algorithm. M=40. R=0.0001 (Figures 9A, 9D and 9G), R=0.45 (Figures 9B, 9E and 9H) and 
R=0.9 (Figures 9C, 9F and 9I).

Figure 10: Threshold effect size enabling misclassification error below 5% for the fixed number of biomarkers in the signature M=40, versus the number P of 
patients (Figure 10A), versus the number N of proteins in the assay (Figure 10B), and versus the number K of clusters of patients (Figure 10C). Completely 

overlapping signatures, ‘among neighbors’ correlation of proteins Rij=R
|i-j|

. Cases of R=0.0001, 0.45, and 0.9 are compared.
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Figure 11: On the determination of the right number of clusters. Figures 11A, 11C and 11E misclassification error versus effect size when the correct number of 
clusters (five) is known and provided to the k-means algorithm (R=0.0001, 0.45 and 0.9). Number of patients P=100, 500. Number of proteins in the assay N=1129. 

Completely overlapping signatures, ‘among neighbors’ correlation of proteins Rij=R
|i-j|

. Figures 11B, 11D and 11F illustrate the situation where the correct number 
of clusters is not provided to the k-means algorithm but is evaluated by the evalclusters.m function based on the values of 4 criteria: Calinski-Harabasz, Davies-
Bouldin, Gap and Silhoutte. Note that as everywhere in this paper, each point is an average of 12 simulations; therefore the optimal number of clusters is not 
necessary integer number. Note that Gap criterion performs much better than the rest of criteria, but even for Gap the required effect size for correct prediction of 
the number of clusters is substantially higher than the one required for correct classification when the number of clusters is known.

are based on the comparison of between cluster distances and within 
cluster distances, with the main differences between the criteria based 
on how these distances are defined (e.g. distances between the centroids 
of the clusters versus the distances between the edges of the neighboring 
clusters). Below we present the results of the simulation where k-means 
algorithm was not provided with the information on the right number 
of clusters (which was 5). Instead, the MATLAB function evalclusters.m 
was used, which calculated the values of 4 criteria (Calinski- Harabasz 
[18], Davies-Bouldin [19], Gap [20] and Silhoutte [21]) and made the 
decision on the optimal number of clusters in the given dataset based 
on the values of each criterion. Figure 11 presents the averaged results 
for 12 datasets simulating the ‘worst case scenario’ of overlapping 
biomarker signatures and ‘among neighbors’ correlation. A case of 100 
patients is presented as a solid line, and case of 500 patients as a dashed 
line. Figures 11A and11B illustrate the case of low correlation R=0.0001, 
Figures 11C and 11D – moderate correlation R=0.45, and Figures 
11E and 11F – strong correlation R=0.9. Figures 11B, 11D and 11F 
present the optimal values of clusters determined based on the above 4 
criteria versus the effect size, while Figures 11A, 11C and 11E present 
the misclassification error versus the effect size for the case where the 
right number of clusters (five) is known a priori and is provided to 
the k-means algorithm. Comparisons of Figure 11A with Figure 11B; 
Figure 11C with Figure 11D and Figure 11E with Figure 11F clearly 
illustrate that correct classification is established at much lower effect 
size values when the true number of clusters is known (Figures 11A, 
11C and 11E) than in the cases where the optimal number of clusters is 
needed to be determined (Figures 11B, 11D and 11F). Comparison of 

the 4 criteria shows that Calinski-Harabasz criterion was consistently 
wrong for our datasets, predicting that the optimal number of clusters 
equals 2 for the range of effect sizes from 0.5 to 5. Interestingly, Davies-
Bouldin criterion predicted 6 clusters for low effect size and 4 clusters 
for high effect size, but never predicted the correct five clusters. Gap 
criterion performed the best by switching from one cluster at low effect 
size to the correct number of 5 clusters at the moderate effect size and 
predicting this number consistently for the high effect size. Consistently 
and predictably, switching to the correct number of clusters occurred at 
the smaller effect size for 500 patients than for 100 patients. Performance 
of the Silhouette criterion looks strange: for low effect size of 0.5 it 
oscillates between the correct number of clusters 5 and neighboring 4 or 
6 for the cases of low and moderate correlations (Figures 11B and 11D), 
predicts the correct number 5 for the high correlation case (Figure 11F), 
but then switches to the wrong number of clusters 2 for the effect sizes 
from 1 to 2.5-3 and only then switches back to the correct  number 
of clusters 5 and predicts it for the high values of effect size. Without 
making any generalizations for other types of datasets, we conclude that 
Gap criterion provides the best estimate of the number of clusters in 
the datasets simulated in our study, i.e., omics data where the difference 
between clusters is reflected in the biomarker signatures, e.g. patterns of 
abundances of several differentially expressed proteins.

Discussion and Conclusion
In this paper, we developed an approach allowing determination 

of the misclassification error of popular clustering algorithms for 
the datasets simulating protein abundance matrices generated by 
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targeted proteomics assays. Comparison of hierarchical, k-means, 
and k-medoids clustering algorithms demonstrated that k-means with 
several (5-8) replicates performed better than two other algorithms 
by enabling misclassification error below 5% at substantially lower 
effect size for all examined types of biomarker signatures and levels of 
correlations between protein abundances. Predictably, for all examined 
cases, the misclassification error was lower at higher effect size and with 
more biomarkers in the signature. Obviously, misclassification error 
can be decreased by increasing the number of the patients in the study 
and decreasing the total number of the proteins in the assay (see Figures 
9 and 10). However, these effects appeared to be much less dramatic 
than the effect of the correlation of the protein abundances within 
the assay, e.g. five-fold increase of the number of patients (from 100 
to 500) and two-fold decrease in the number of proteins in the assay 
(from 1000 to 500) lead to about 20% decrease in the threshold value 
of the effect size (enabling misclassification error below 5%), while 
two-fold increase of protein abundance correlation (from R=0.45 to 
R=0.9) leads to two-fold increase of the threshold effect size value. This 
finding is especially important since the protein abundance correlation 
matrix can be generated relatively easily for a given assay both from the 
experimental data and through pathway analysis, but is very seldom 
published and discussed. We hope by this publication to draw attention 
to the importance of the correlation matrices of omics assays.

The developed approach demonstrates that it is possible to perform 
power analysis for the unsupervised classification, i.e. determine the 
required sample size (number of patients) for the study given the 
expected number of subtypes of disease, number of biomarkers in the 
signature, effect size for each of the biomarkers, and the correlation 
matrix of protein abundances for the given assay. We are in the process 
of developing an open source online tool for this type of power analysis.

Analyses performed in this paper demonstrated that substantially 
higher effect size is required to determine the correct number of clusters 
(subtypes of disease) from the data than to correctly classify the same 
data when the number of clusters is known. This finding suggests that 
it might be beneficial to perform a two-stage classification process, 
where only the patients with high severity of disease (presumably 
higher effect sizes of biomarkers) are used for the first stage of analysis 
to determine the number of clusters (subtypes of disease), and then the 
whole cohort of patients with all severity levels is classified, given the 
number of clusters determined during the first stage. Obviously, this 
2-stage approach has a limitation of assuming that there is the same true 
number of clusters for patients with severe symptoms as there are for 
those across the whole spectrum of symptoms. Nevertheless, it might be 
a useful starting point for classification in case of low effect sizes.

Several assumptions and simplifications were used in this paper, 
including either total non-overlap or total overlap of biomarker 
signatures, ‘within group’ or ‘among neighbors’ correlation of protein 
abundances, equal effect size of all biomarkers in the signature, and 
equal number of samples/patients in each cluster. These assumptions 
served to reduce the potential combinatorial complexity of the ‘real 
life’ data and are not required for the above approach to simulation of 
misclassification errors in clustering methods. Power analysis for each 
‘real life’ case can be performed given the correlation matrix of the 
assay, expected ranges of effect sizes and numbers of biomarkers in the 
signatures for each subtype of disease. Simulation of the more complex 
‘real life’ cases with unequal cluster sizes, biomarker signatures and 
correlation matrix structure derived from real data will be presented 
in our next publications. Also importantly, we plan to develop a user-
friendly open source publicly available toolbox for power analysis in 

unsupervised and semi-supervised classification based on the above 
described approach. Lastly, this approach is not limited to proteomics 
data, or more generally to omics data, but can be used to perform power 
analysis of classification based on psychological tests, or self-reported 
measures surveys, where the correlation matrix of the questionnaire 
might be not less important than correlation matrix of proteomics assay.

Supplementary Material
An example of simulated data for the case of 100 patients, 5 equal 

size patient clusters, assay of 1129 proteins, overlapping biomarker 
signatures of 40 biomarkers, ‘among neighbors’ correlation matrix 
of proteins with correlation coefficient R=0.45, and effect size=2 is 
presented as a Supplementary file S_N1129_M40_R045_Ef2.csv. 
Note that standardized log(abundances) of 40 differentially abundant 
proteins (biomarkers) are presented in rows 1089-1129. Note that 
this is one of the numerous random instances of the simulated data. 
MATLAB code of the in- house developed function estmisclrate.m used 
to determine misclassification rate of clustering algorithms is presented 
as a Supplementary file estmisclrate.pdf.
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