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Introduction
The U.S. Food and Drug Administration has approved roughly 

two dozen drugs for breast cancer treatment, but only a few predictive 
biomarkers are currently available to guide their use. For example, 
levels of the estrogen or progesterone receptor have been found to 
predict sensitivity to compounds that interfere with estrogen receptor 
signaling, and, the over-expression of human epidermal growth factor 
receptor 2 (HER2) predicts sensitivity to pertuzumab, trastuzumab 
and lapatinib. Additional biomarkers would be of significant value for 
determining the sensitivity of tumors to drugs already approved for 
clinical use in breast cancer, as well as for new drug development [1,2]. 

What sort of data could yield accurate predictions of a patient’s 
response to a drug? Recent efforts in this area have focused on solving 
the simplified problem of predicting the responses of cancer cell 
lines, rather than of tumors [3-8]. This line of inquiry has explored a 
variety of predictor variables: gene mutations, copy number variation, 
methylation patterns, gene expression data [3-5,7,8], reverse phase 
protein array data [4,9], and receptor signaling networks [10]. In 
addition, researchers have begun to apply statistical and machine 
learning methods to evaluate and improve the identification of 
predictors [11-14]. Geeleher et al. [15] propose that combining cell line 
data with measurements of gene expression in patient tumor samples 
can be used to predict a patient’s response to a drug. 

RNA isolated from tumors has attracted considerable interest 
as a source of predictors of drug response in several types of cancer 
[16,17]. To date these attempts have not achieved sufficient success 
for application in the clinic. Immunohistochemistry is now used to 
characterize the expression of the estrogen receptor, progesterone 
receptor and HER2 proteins in breast cancer, suggesting that protein 
expression data may be more useful than mRNA in predicting drug 
response. 

Our research group has assembled a database of glycoproteins 

from 26 breast cancer cell lines [18,19]; for 22 of these cell lines drug 
response data is publicly available. We used liquid chromatorgraphy/
tandem mass spectrometry (LC/MS/MS) to identify the proteins, 
and spectral counting to determine their relative expression levels. 
This dataset provides an opportunity to evaluate the usefulness of 
protein expression measured by mass spectrometry in modeling the 
sensitivities of the cell lines to drugs, and to compare the performance 
of various types of data in prediction.

The glycoproteins in our dataset are primarily secreted or plasma 
membrane proteins. The dataset is enriched for proteins that mediate 
contacts between epithelial cells, as well as for components of the 
basement membrane and extracellular matrix. We have shown that 
many of these proteins are expressed at different levels in malignant 
compared to non-malignant cell lines, and that the malignant cell lines 
are typically characterized by significantly lower levels of glycoprotein 
expression [18]. 

Large data sets describing the effects of various drugs on the growth 
of cancer cell lines have recently been generated for the purpose of 
accelerating the preclinical evaluation of new compounds [3-8]. One 
of these datasets describes the effects of 90 drugs on 70 breast cancer 
cell lines, and is the largest of the datasets with respect to the number 
of drugs and breast cancer cell lines [4]. Those authors measured 
the concentration of each drug that causes a 50% reduction in the 
proliferation of cells in culture (GI50). One striking finding is that the 
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cell lines vary greatly in sensitivity to various drugs, in some cases by 
more than four orders of magnitude. While acquired resistance to 
chemotherapeutics or targeted agents is well recognized and is the 
subject of intensive study [20], the variation in sensitivities to these 90 
drugs displayed by the cell lines in culture is not likely to be due to 
resistance acquired from previous exposure to these drugs; the patients 
from whose tumors the cell lines were derived would not have been 
treated with most of these drugs. Thus, there appears to be much 
intrinsic variability in the responses of these tumor-derived cell lines 
to drugs. If replicated in breast tumors, these intrinsic differences in 
sensitivity could explain some of the variability of patients’ responses 
to chemotherapeutic drugs or targeted agents.

We applied regularized regression to model the intrinsic sensitivities 
of cell lines to 90 drugs [4] using the glycoprotein dataset. For purposes 
of comparison, we also modeled the drug sensitivities using mRNA 
expression for mRNA species corresponding to the glycoproteins in 
our dataset using two mRNA datasets. Those datasets, both publicly 
available, are a microarray dataset [7] and an RNAseq dataset [4]. In 
addition we modeled the drug sensitivities using two publicly available 
protein datasets, ones not primarily based on glycoproteins [4,21]. 

Materials and Methods
Our glycoprotein dataset includes 185 glycoproteins obtained 

from 22 breast cancer cell lines. Glycoproteins were collected using 
a protocol in which the first step, oxidation of the glycans using 
periodate, takes place on intact cells [19]. After cell lysis and enrichment 
for glycoproteins, the samples were subjected to LC/MS/MS to 
identify the proteins. Our protocol for glycoprotein enrichment and 
analysis by LC/MS/MS is described in detail elsewhere [19]. Relative 

quantitation was achieved by counting identified spectra (spectral 
counts) (Supplementary Information Table 1). The glycoprotein data 
is similar to that described previously [18,19], with seven additional 
cell lines (Supplementary Information Table 2). Collectively the data 
includes cell lines classified as luminal, basal, claudin-low, ER positive 
and HER2 overexpressing. With respect to these variables, the set of 
cell lines reflects much of the variety present in breast tumors. 

Protein analyses were carried out on a Thermo LTQ ion trap mass 
spectrometer and a Thermo Q Exactive Orbitrap mass spectrometer. 
Spectral counts were used to determine relative expression levels 
of a glycoprotein in the various cell lines. Aliquots from the same 
glycoprotein sample produced similar results when analyzed on the 
two mass spectrometers, although less protein was required for the 
analyses carried out on the Orbitrap instrument. To combine samples 
from the two datasets, the data were plotted in a quantile-quantile 
plot, and a line was fit. Using the slope and intercept, the inverse 
transform was applied to the Q Exactive data, forcing it to have the 
same center and dispersion as the LTQ data. For four of the cell lines 
(HCC1395, HCC1428, HCC38 and MDAMB468) there were only Q 
Exactive data. Spectral counts for these cell lines were normalized to 
the LTQ data using household proteins. The seven proteins in the LTQ 
dataset with the lowest coefficient of variation were P20645, Q9BT09, 
P62937, Q16563, Q9BVK6 Q08722 and P07602. The Euclidean length 
of the spectral counts for these seven glycoproteins was calculated for 
both the LTQ data and the Q Exactive data, and the ratio was used 
to normalize all Q Exactive spectral count data. After combining LTQ 
and Q Exactive data, glycoproteins with fewer than 100 spectral counts 
over all the cell lines were dropped from the dataset. For purposes of 

Drug Accession Number Gene Name R2

Lapatinib P04626 HER2 0.76
Sigma AKT1,2 P48960 CD97 0.70

Rapamycin O14672 ADAM10 0.69
Gefitinib Q01650 SLC7A5 0.67

GSK2141795 Q8IWA5 SLC44A2 0.66
Erlotinib Q01650 SLC7A5 0.66

GSK2126458 P50897 PPT1 0.65
Ispinesib P08195 SLC3A2 0.63

GSK1120212 P08648 ITGA5 0.60
Vorinostat Q07954 LRP1 0.59

GSK1059615 P12830 CDH1 0.55
AG1478 Q01650 SLC7A5 0.53

Table 1: The top twelve single predictor models for the glycoprotein dataset.

glycoproteins R RNA array R RNA seq R RPPA R MRM R
AKT inhibitor 0.86 Cisplatin 0.58 Disulfiram 0.66 Lapatinib 0.79 Lapatinib 0.82

Gefitinib 0.79 AKT inhibitor 0.56 AKT inhibitor 0.62 Erlotinib 0.79 AKT inhibitor 0.77
GSK1059868 0.57 TCS 2312 0.55 OlomoucineII 0.59 BIBW2992 0.68 Rapamycin 0.62
GSK2126458 0.56 GSK2119563 0.46 Bosutinib 0.58 CPT 11 0.67 Docetaxel 0.58

Erlotinib 0.54 GSK2126458 0.44 GSK1059868 0.57 AKT inhibitor 0.67 AG1478 0.57
BEZ235 0.53 Erlotinib 0.42 GSK461364 0.54 AZD6244 0.58 BIBW2992 0.56

Rapamycin 0.53 CGC 11047 0.4 GSK2141795 0.53 Everolimus 0.56 GSK1070916 0.52
GSK2119563 0.44 Fascaplysin 0.39 GSK1120212 0.51 NU6102 0.54 PF 3814735 0.52

Vorinostat 0.41 GSK923295 0.36 Etoposide 0.48 LBH589 0.49 Sunitinib 0.48
Lapatinib 0.35 Etoposide 0.3 PF 4691502 0.48 Triciribine 0.47 PF 4691502 0.43
Ispinesib 0.29 LBH589 0.3 Gemcitabine 0.47 GSK461364 0.45 GSK2119563 0.43
AZD6244 0.29 AS 252424 0.25 AZD6244 0.39 GSK2126458 0.43 Tykerb:IGF1R 0.4

Table 2: Top Performing Drugs in Cross Validation.
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regression analysis one spectral count was added to all values, and the 
base ten logarithm taken. 

RNA data: Exon array analysis is described in reference 7. The data 
are available from ArrayExpress (E-MTAB-181). These data include 
19 of the cell lines in the glycoprotein dataset, and measurements of 
mRNA expression for 160 of the glycoproteins. The RNA seq dataset 
(Gene Expression Omnibus, GSE48216) is from reference 4. The 
subset analyzed here covers 19 cell lines and 184 of the proteins in the 
glycoprotein data.

RPPA data: The data (47 cell lines) was used as provided in 
Additional Files Table 2 of reference 4. 

MRM data: The multiple reaction monitoring (MRM) mass 
spectrometry data (27 cell lines) are based on Table S4 of reference 
21. The measurements were generated from results obtained by three 
laboratories, with three replicates taken at each site. Two peptides were 
measured per protein. In some cases the measured values fell outside 
the limits of quantitation, which are provided in the study. For use 
in the present project the replicates and the data from different sites 
were averaged. For each protein the peptide with the highest signal was 
selected. In cases for which numerical values were not provided, the 
appropriate upper or lower limit of quantitation was used. The final 
dataset describes 317 proteins (Supplementary Information Table 3). 
Base ten logarithms were used for regression. 

Penalized Regression: The methods used are elastic net regression 
and lasso regression [22]. Calculations were performed using the 
glmnet package in the R statistical programming language. One 
adjustable parameter, λ, sets the amplitude of the penalty term; a second 
parameter, α, is a weight that determines the mixture of L1 and L2 
norm components in the penalty. Letting α = 1 gives lasso regression, 
and 0 < α < 1 gives elastic net regression. For elastic net regression we 
incremented α from 0 to 1 in steps of 0.1. For each value of α, we found 
the best value of λ by cross validation (cv.glmnet function), using the 
mean squared error (MSE) to evaluate the fit of the model to the data. 
Plots of MSE as a function of α showed some instability from run to 
run, so we used the average of 10 runs. The value of α giving the lowest 
MSE was selected for the elastic net model. These values differed from 
drug to drug. We performed cross validation by leaving out all pairwise 
combinations of cell lines; for the glycoprotein dataset (22 cell lines) 
this is similar to 10-fold cross validation. We found the correlations 
between each of the 21 cross validation estimates of drug sensitivities 
for all cell lines and the observed sensitivity values, and finally averaged 
these correlations. Optimal values of α and λ were determined for each 
training set in the cross validation as described above. 

Results and Discussion
Quantitative protein expression data may be more useful than 

mRNA data for predicting the responses of breast cancer cell lines to 
drugs. In this study we evaluated the ability of a glycoprotein dataset 
obtained via mass spectrometry to provide explanatory or predictor 
variables to fit measured drug sensitivities (Figure 1). The drug response 
profiles and the protein data are both quantitative, hence predicting the 
sensitivities of cell lines to various drugs implies modeling quantitative 
drug response data as a function of some number of quantitative 
predictor variables, i.e., it is a regression problem. There are 22 cell lines 
for which both drug sensitivity and spectral count data is available, 
and which are therefore suitable for regression modeling. There 
are 185 proteins in the glycoprotein dataset. With more predictor 
proteins than cell lines there is no unique solution to the regression 
problem for a given drug. However, there are methods, elastic net 
and lasso regression, to construct regression models and reduce the 
number of predictor variables to the more important ones in parallel 
[22]. Elastic net and lasso regression have been used previously for 
constructing regression models of the drug responses of cell lines using 
gene expression as predictor variables [3,5,11], and the performance 
of elastic net and ridge regression have been studied by simulation 
[12,14]. Here we used elastic net and lasso regression for each drug to 
develop models that fit cell line sensitivity to that drug. 

Both elastic net and lasso regression reduce the number of predictor 
variables, but they do so to different extents. Elastic net regression 
models usually have more predictors than do the lasso models for the 
same drug, as a result the fits to the data are better. The disadvantage 
of the elastic net method is that with more variables the model may 
contain some predictors with little statistical or biological significance.

Rapamycin illustrates the differences between the two methods. 
The breast cancer cell lines in our sample vary in their sensitivity 
to rapamycin by more than four orders of magnitude. The model 
constructed using elastic net regression had 92 predictor variables, 
giving a very tight fit to the observed data. Models constructed 
using lasso regression showed some variability of results over 1000 
separate runs, but three predictor proteins appeared in all models 
(Supplementary Information Table 4). The three predictors are 
HER2 (ERBB2, UniProt Accession number P04626), Disintegrin and 
metalloproteinase domain-containing protein 10 (ADAM10, O14672) 
and Junctional adhesion molecule A (F11R, Q9Y624). These three 
proteins are also among the 92 predictors identified in the elastic net 
model. Using the three proteins for ordinary least squares multiple 
regression gives a model in which the fitted drug sensitivities match the 
observed ones with a correlation coefficient of 0.91. It should also be 
noted that lasso regression identified HER2 as a predictor for sensitivity 
to everolimus and temsirolimus, two derivatives of rapamycin. While 

Figure 1: The regression model. One or more predictor variables are from the glycoprotein or other dataset.
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Figure 3: Comparison of predicted with observed sensitivities for afatinib 
(BIBW2992). Observed values of the drug sensitivities are plotted on the 
horizontal axes. A. Fitted values from elastic net modeling are plotted on 
the vertical axis. The predictors are HER2, SLC7A5, BST2, LAMB1, CTSB, 
CDH13, TCN1, SUSD2 and A2ML1. B. Lasso model. The four predictor 
variables from the lasso model are HER2, SLC7A5, BST2 and A2ML1. The 
fitted values (vertical axis) were constructed with these predictors using 
ordinary least squares regression. Red symbols: cell lines that overexpress 
HER2. Blue symbols: drug-sensitive cell lines that do not overexpress HER2.

the lasso models generally do not fit the data as well as the elastic net 
models, they select fewer variables. For many drugs in this dataset the 
sensitivities could be fit well with 1-3 predictor variables (see below). 

Inhibitors of HER2 or the EGF receptor

Five of the drugs we examined were developed with the goal 
of inhibiting the epidermal growth factor receptor (EGFR), or its 
constitutively active variant, HER2. HER2 is present in the dataset and 
is over-expressed in three of the 22 cell lines. Lasso regression identifies 
HER2 as a predictor for the two HER2 inhibitors, afatinib (BIBW2992) 
and lapatinib, and also for two of the EGFR inhibitors, AG1478 and 
gefitinib. This finding serves as a positive control for the application of 
lasso regression to the glycoprotein data.

The quantitative relationships between HER2 expression levels and 
drug sensitivities can be seen in the scatterplots in Figure 2. The HER2 
over-expressing cell lines (red symbols) have comparatively high drug 
sensitivity (vertical axes) for gefitinib and lapatinib. Some cell lines with 
high sensitivity to gefitinib do not over-express HER2 (blue symbols). 
Scatterplots for AG1478, afatinib and erlotinib are similar to that of 
gefitinib, showing that over-expression of HER2 is associated with 

drug sensitivity, but in addition a few cell lines that do not overexpress 
HER2 are also drug sensitive. 

Regression models with multiple variables for EGFR/HER2 
blockers

By adding one or more predictor variables to HER2, it is possible 
to fit the sensitivities of the cell lines to gefitinib, AG1478, afatinib and 
erlotinib, where the relation between sensitivity and HER2 expression 
is not linear. The elastic net model for afatinib contained nine predictor 
variables, compared to four in the lasso model. For both models 
HER2 was one of the predictor variables. The elastic net model gives a 
somewhat tighter fit to the observed drug sensitivities (Figure 3). Both 
models place the afatinib-sensitive cell lines that do not over-express 
HER2 on the linear relation (blue symbols). In addition to HER2 
(ERBB2 or P04626), the lasso model included SLC7A5 (large neutral 
amino acids transporter small subunit 1, Q01650), BST2 (bone marrow 
stromal antigen 2, Q10589) and A2ML1 (alpha 2 macroglobulin-like 
protein 1, A8K2U0); these are the four predictors identified most often 
in the lasso models. HER2 expression has a fairly high correlation with 

A 

B 

HER2 

HER2 

Figure 2: Drug sensitivity as a function of HER2 expression. Each point 
corresponds to a cell line. A. Gefitinib B. Lapatinib. Sensitivity (vertical axis) 
is the negative common logarithm of GI50, the drug concentration that inhibits 
proliferation by 50% (ref. 4). The horizontal axis is the common logarithm 
of the spectral counts, after adding 1 to each value. Red symbols: cell lines 
that overexpress HER2. Blue symbols: drug-sensitive cell lines that do not 
overexpress HER2.
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afatinib sensitivity, 0.65, but the SLC7A5, BST2 and A2ML1 have lower 
correlations, 0.61, -0.59 and 0.44, respectively. Part of their contribution 
is to enable the modeling of the afatinib-sensitive cell lines with normal 
HER2 expression (blue symbols) correctly. A model using only HER2 
as a predictor would mistakenly suggest that the cell lines represented 
with blue symbols are not sensitive to afatinib.

Models with one or three predictors

Lasso regression returned a model for 87 of 90 drugs (Supplementary 
Information Table 4). For each drug we identified the best model with 
one predictor protein, i.e. the one with the smallest mean squared error. 
The coefficients of determination (R2 values comparing the observed 
and fitted drug sensitivities) varied from 0.2 to nearly 0.8 (Figure 4). 
The frequency distribution of the coefficients of determination for 
the glycoprotein data is unimodal and approximately symmetrical, as 
expected from statistical theory. The distribution is skewed slightly to 
the right due to a few drugs for which we found an especially good model. 
Table 1 lists the top dozen drugs with their predictors. Interestingly, 
SLC7A5 (large neutral amino acids transporter small subunit 1), rather 
than HER2, is the best predictor for erlotinib, gefitinib and AG1478. 

For each drug we found the best (lowest MSE) model with three 

predictors using the Leaps and Bounds algorithm [23]. The coefficients 
of determination are generally higher for the models with three 
predictor variables than they are for the one-predictor models (Figure 
4). The average coefficient of determination for single predictor models 
was 0.44, whereas for the best three-predictor models it was 0.79. 
Clearly, increasing the number of predictors can greatly improve the 
performance of models in fitting the observed drug sensitivities. 

The magnitude of the improvement may be exaggerated somewhat, 
due to the possibility of over fitting as the number of predictor variables 
increases and the best models are selected. Over fitting can occur when 
the model includes variables that by chance reduce the MSE for the 
model in the sample under study. A model that overfits would probably 
perform poorly on cell line data that was not used to construct the 
model. Predictor variables that contribute to overfitting may have little 
or no biological relevance to the problem of modeling drug sensitivities.

While increasing the number of predictor proteins from one to three 
may allow some overfitting, the proteins selected by the lasso algorithm 
as predictors often make biological sense. For example, the model 
illustrated in Figure 3B for afatinib included SLC7A (Q01650) and 
BST2 (Q10589) as predictors. Both have been identified independently 
in the context of breast cancer. SLC7A is one of five proteins in the 
Mammastrat test for patients at high risk for recurrence after hormone 
therapy [24]. A meta-analysis of gene expression datasets suggested 
that BST2 in breast tumors is a predictor for tumor size, aggressiveness 
and host survival [25]. Thus, it is plausible that these proteins may 
have value in modeling drug sensitivities. Increasing the number of 
predictors beyond one has the potential to model the observations 
better because it makes use of more information relevant to the drug 
or disease. 

Prediction error

We used all available cell line data to create and test the models 
presented so far. A more demanding and realistic approach would 
involve building a model based on some training data, then using it to 
predict drug response to other cell lines not in the training set. Given 
the time and expense involved in obtaining mass spectrometric data, 
it is more efficient to use a cross validation approach than to expand 
the data set further. In cross validation the cell lines are divided into a 
training set and a test set. A regression model built from the training 
data is then used to predict the drug sensitivities of the test set cell lines. 
The coefficient of correlation between the predicted and the observed 
drug sensitivities gives an idea of how well the modeling performs. 

We carried out cross validation using elastic net regression on our 
glycoprotein dataset and on two related mRNA datasets: a microarray 
gene expression dataset that includes 74 drugs [7], and an RNA seq 
dataset that includes 90 drugs [4]. To compare directly the performance 
of mRNA and protein data, we trimmed the original mRNA datasets to 
contain only the mRNA corresponding to the glycoproteins. We then 
conducted a cross validation analysis, as described above. The two best 
performing models—for the Sigma Akt1, 2 inhibitor and gefitinib—
used glycoprotein predictors (Table 2 and Supplementary Information 
Table 5). Overall the glycoprotein data and RNA seq data had better 
ability to model the observed drug sensitivities (higher correlation 
between observed and fitted values) than did the array gene expression 
data.

Other protein datasets

We tested two other publicly available protein datasets for their 
ability to predict drug sensitivities: a reverse phase protein array 
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Figure 4: Frequency distributions of coefficients of determination (R2) for all 
single predictor models and all three-predictor models. For each drug the pool 
of candidate predictors was identified by lasso regression (Supplementary 
Information Table 4). The best (lowest MSE) one and three predictor models 
were identified using the Leaps and Bounds algorithm [23]. The coefficients of 
determination were found using ordinary least squares regression.
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(RPPA) dataset, which depends on antibody binding for quantitation 
[4], and a dataset obtained using mass spectrometry, resulting from 
a project to develop multiple reaction monitoring (MRM) assays for 
proteins in breast cancer cell lines [21]. 

In the RPPA dataset, the 70 proteins measured were pre-selected 
by the investigators on the basis of known linkage of the proteins to 
cancer, including proteins known to be important in the control of 
signaling pathways, cell proliferation and DNA repair. 

In the MRM dataset, targeted assays were devised for 317 proteins 
in 30 breast cancer cell lines, of which 27 lines overlap with the drug 
response dataset. The proteins were selected by the authors of that 
study for differential expression across the cell lines. They are found 
in many cellular compartments and contribute to a wide range of 
biological processes. Quantitation was achieved by comparing the 
test signal intensity to that of a reference peptide labeled with a heavy, 
stable isotope. Only two proteins, HER2 and cadherin E, are common 
to the glycoprotein, RPPA and MRM datasets.

Figure 4 shows the distributions of the coefficients of determination 
for one and three predictor models built from the RPPA and MRM 
dataset. The distributions for models built using MRM predictors were 
similar to those built using glycoprotein, array mRNA and RNA seq 
predictors. In contrast, the RPPA data consistently gave models with 
lower coefficients of determination, with either one or three predictors. 

The sensitivities of the cell lines to EGFR or HER2 blockers 
(AG1478, afatinib, erlotinib, gefitinib and lapatinib) were modeled 
effectively by both RPPA and MRM data, and these drugs often 
performed well in cross-validation (Table 2).

Overall comparison of the five datasets

Summarizing the results so far, one dataset, the RPPA protein 
dataset, performed less well than the others in modeling using all 
cell lines, as judged from the distributions of the coefficients of 
determination (Figure 4). The array mRNA dataset performed less 
well than the others in cross validation (Table 2). Inspection of Table 
2 shows that many of the same drugs among the top dozen, i.e. many 
drugs were modeled well using predictors from different datasets. How 
similar are the cross validation results of the five datasets to each other? 
The relationships are summarized in a dendrogram (Figure 5). The 

two mass spectrometry datasets (glycoprotein and MRM) [18,19,21] 
showed the strongest agreement with each other. The array RNA dataset 
is most distant from the others, with the RNA seq data giving results 
closer to those of the protein datasets. Notably, the drug sensitivity 
predictions of the glycoprotein and MRM datasets were closer to one 
another than were the predictions of the glycoprotein and RNA data. 
The glycoprotein and MRM datasets generally do not overlap in terms 
of proteins identified, whereas both RNA datasets contain only gene 
expression measurements of the glycoproteins. 

Examples of models: PI3K inhibitors

There are seven phosphatidylinositol-3-kinase (PI3K) inhibitors 
among the drugs. Three of them, BEZ235, GSK2126458 (omipalisib) 
and GSK 2119563 performed well in both the modeling (Supplementary 
Information Table 4) and the cross validation (Table 2). One protein, 
COL6A1, is a predictor for all three drugs. The two GSK inhibitors 
shared several inhibitors, including Suppressor of tumorigenicity 14 
(ST14) and SPINT1, an inhibitor of ST14 and also of hepatocyte growth 
factor activator [26]. Finding common predictor proteins for different 
drugs in this class confirms our confidence in variable selection by lasso 
regression, and identifies proteins that may serve to predict the activity 
of PI3K inhibitors in patient samples. 

Rapamycin, everolimus and temsirolimus

Rapamycin, everolimus and temsirolimus are related compounds 
that block the mammalian target of rapamycin (mTOR); the cell 
lines varied in sensitivity to these drugs over 4.6, 3.3 and 3.7 orders 
of magnitude, respectively. mTOR is in the RPPA dataset, but was 
identified with very low probability as a predictor for these drugs 
(Supplementary Information Table 4). All three drugs can be modeled 
well with three glycoprotein predictors (Supplementary Information 
Figure 1). It can be seen that HER2 over-expressers are among the most 
sensitive cell lines. HER2 was the single common predictor for all three 
drugs. Everolimus is approved for use in patients with ER+, HER2- 
breast cancer, in combination with exemestane [27]. The cell line data 
suggests that HER2+ patients may also benefit from everolimus.

Taxanes

The sensitivities of the cell lines to paclitaxel and docetaxel varied 
over smaller ranges than for rapamycin. For both drugs it was possible 
to find predictive models with high coefficient of determination 
(Supplementary Information Figure 2). Paclitaxel and docetaxel are 
similar chemically, hence it might be expected that they share some 
predictor proteins. Five common proteins were selected by most lasso 
models: FKBP4, USP5, MARS, CTSZ and ALDH7A1.

Akt inhibitors

The drug list includes three AKT1 inhibitors: GSK2141795, Sigma 
AKT 1,2 inhibitor, and triciribine. The RPPA proteins include AKT 
(AKT1), AKTp473, and PDK1, a kinase that phosphorylates AKT. 
AKTp473 and PDK1 (or PDK1p241) were found in lasso regression 
models for all three drugs. A regression model with AKTp473 and PDK1 
as predictors allowed the fitting of the GSK2141795 sensitivities with 
coefficient of determination (R2) = 0.52 (Supplementary Information 
Figure 3). By itself, PDK1 gives a better single predictor model (R2 
=0.36) than does AKTp473 (R2 =0.20). For the Sigma inhibitor, PDK1 
alone gives a model with R2 = 0.48; adding AKTp473 does not improve 
the model further. Modeling triciribine sensitivity failed with these two 
predictors. For the two drugs in which modeling succeeded, PDK1 is 

Figure 5: Dendrogram of datasets. The cross-validation data, some of which 
is displayed in Tables 2, were used to create and then cluster a distance matrix 
with the dist() and hclust() functions in R.
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the more useful predictor even though AKT is the nominal target of 
the drugs.

Gemcitabine and Vinorelbine

These drugs are used for patients who experience recurrence after 
treatment with the standard of care chemotherapy. As with rapamycin, 
the sensitivities of the cell lines to gemcitabine and vinorelbine spanned 
approximately four orders of magnitude. If this variation reflects the 
situation in patients’ tumors, there are patients who are highly sensitive 
to these drugs. The best model for gemcitabine (R2 = 0.77) appeared 
in the glycoprotein dataset, with predictors P17900 (Ganglioside 
GM2 activator), P28799 (Granulins) and P08842 (steryl sulfatase) 
(Supplementary Information Figure 2). The best model for vinorelbine 
(R2 = 0.85) was found in the MRM dataset, with predictors G6PD 
(Glucose-6-phosphate 1-dehydrogenase), HRSP12 (Ribonuclease 
UK114) and TPM4 (Tropomyosin alpha-4 chain).

CDK inhibitors

Fascaplysin, NU6102, Olomoucine II and Purvalanol are inhibitors 
of cyclin-dependent kinases (CDKs) and are in the main drug database 
studied here. Palbociclib, another CDK inhibitor, has been analyzed 
elsewhere on breast cancer cell lines [28]. For all these drugs except 
Oloumucine II one or more cyclins were identified as predictors in a 
high proportion of lasso runs (RPPA data, Supplementary Information 
Table 4). The best model for palbociclib, with R2 = 0.79, was found in 
the MRM protein dataset using mitochondrial thioreduxin-dependent 
peroxidide reductase (PRDX3), acyl-amino acid releasing enzyme 
(APEH) and importin subunit alpha (KPNA2). 

Conclusions
Five datasets were compared in their abilities to provide predictors 

for regression modeling of drug sensitivities in breast cancer cell lines. 
We used two criteria for evaluating performance: the agreement between 
observed and predicted sensitivities (coefficient of determination), and 
prediction error estimated by cross validation. The glycoprotein and 
MRM datasets, obtained via mass spectrometry, and a RNA seq dataset 
performed best, with the glycoprotein and MRM datasets giving more 
consistent results in the cross validation.

Drugs that block the EGF receptor or HER2 were modeled well, 
at least partly because HER2 is in all the datasets. However, it is not 
necessary that a drug have its target in the data for this approach to 
work. For example, AKT and mTOR are not present in either the 
glycoprotein or MRM datasets, yet the Sigma Akt1,2 inhibitor and 
rapamycin were modeled accurately using predictors from these 
datasets. It appears that there is information useful for modeling drug 
sensitivity not just in the nominal targets of the drugs but also in the 
expression levels of other proteins. 

These results show that it is possible to predict the responses of 
breast cancer cell lines to drugs, particularly when mass spectrometry 
has been used to quantify protein expression. Can the approach be 
extended to patient samples? One possibility would be to use targeted 
assays on tumor samples. The MRM dataset targets specific proteins; 
various methods for targeting proteins by mass spectrometry are 
currently under development [29]. Methods have also been developed 
for extracting proteins for mass spectrometry from formalin-fixed 
paraffin embedded (FFPE) samples [30], which are more readily 
available than fresh or frozen tissue, and which would be a convenient 
source of protein for targeted assays. Since patient outcomes for 
FFPE samples are known (e.g., whether the patient experienced a 

clinical response or an extended progression-free survival time), these 
outcomes would be modeled as response variables. Using protein 
expression levels, it may be possible to generate statistical models that 
predict patient response for many more drugs used in breast cancer.
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