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ABSTRACT
This paper presents minimum-fuel, low-thrust trajectory optimizations for Earth-to-Mars orbit transfer using a

constant specific impulse engine. The problem is formulated as an optimal trajectory design with the input power

and the thrust direction being the control variables in the two-dimensional polar coordinate system. The problem is

solved by both direct method and indirect method, respectively. Using Pontryagin’s Minimum Principle and the

primer vector theory, the thrust direction is expressed as a function of costate variables and the Bang-Bang control

law is derived, respectively. The derived two-point boundary-value problem is then solved by two-point-boundary-value

solver. The optimal control problem is also solved by the direct method formulation which transcribes a continuous-

time optimal trajectory design to a finite dimensional nonlinear programming problem which in turn is solved by a

nonlinear programming solver. The two optimization methods are utilized to find optimal trajectories from Earth to

Mars orbit and it is concluded that constant specific impulse thrust trajectory optimization produces Bang-Bang

control responses reducing propellant consumption for a variety of trajectories. The optimization results are validated

by the direct and indirect methods showing numerical matches and are also analyzed with the primer vector theory.

The results are useful for broad trajectory search in the preliminary phase of mission designs.

Keywords: Constant specific impulse; Low-thrust; Bang-Bang control; Direct method; Indirect method; Electric

propulsion

INTRODUCTION
Electric propulsion systems have demonstrated that low-thrust
engines have the capability to be used for long-duration travels
by the planetary and interplanetary space missions. Electric
propulsion has been used by NASA’s deep space 1 and Dawn,
ESA’s SMART-1 and JAXA’s Hayabusa and Hayabusa 2 [1-4].
Low-thrust electric propulsion spacecraft is known to have a
greater payload capability than conventional chemical
propulsion spacecraft. Low-thrust propulsion is very effective for
long-duration of interplanetary space missions but the
corresponding problem is computationally challenging to solve
[5]. Low-thrust trajectory optimization generally accompanies
determining the control variables, which may include thrust
magnitude and direction and parameter and the corresponding
trajectories while minimizing a given performance index
(propellant consumption or time-of-flight) and satisfying

boundary conditions (departure and arrival orbits), mid-point
conditions and path constraints.

The optimizations of low-thrust trajectories have been
mathematically formulated as an optimal trajectory design
(OCP) [6]. In general, the techniques to any optimization
problems can be divided into two categories: Direct method and
indirect method [7]. Indirect method solves the optimal
trajectory design by obtaining the solution to the corresponding
Two-Point Boundary-Value Problem (TPBVP) which results from
the calculus of variations. The application of the Lagrange
multipliers (costates) doubles the number of differential
equations that have to be integrated along the trajectory.
However, the solution to the TPBVP is very sensitive to initial
guess for costate variables which do have any intuitive physical
meanings. In contrast, direct method solves the optimal
trajectory design by converting it into a Nonlinear Programming
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scenarios. Numerical studies show that the fuel-optimal, low-
thrust heliocentric Earth-to-Mars trajectories for the specific
arrival time and maximum power are obtained with different
thrust magnitudes with “on-off-on” thrusting sequence. The
primer vector theory is employed to analyze the Bang-Bang
control structure by monitoring the variations of the switching
functions.

This paper develops minimum-fuel, two-dimensional low-thrust
trajectory optimization methods for the spacecraft with a
constant specific impulse engine to apply for Earth-to-Mars orbit
transfer using direct method and indirect method. The
trajectory optimization problems are solved in the heliocentric
frame with bang-bang control structure to obtain minimum-fuel,
two-dimensional low-thrust Earth-to-Mars trajectories. The
optimal solutions of the two optimization methods are validated
with the primer vector theory and their numerical matching.
Finally, the solutions are also validated for different flight time
and maximum input powers.

MATERIALS AND METHODS

Problem formulation

In this section, the governing equations of motion are given in
the two-dimensional polar coordinate and the normalized
equations of motion are also given. The spacecraft is propelled
by electric propulsion with a constant CSI engine.

Equations of motion: This trajectory optimization problem is
modeled in a two-dimensional, heliocentric (sun-centered) polar
coordinate system to make the optimization methods more
efficient and robust instead of Cartesian coordinates which is
the simplest but most disadvantageous choice [20]. All motions
are assumed to be confined to the ecliptic or fundamental
plane. Figure 1 illustrates the geometry of this coordinate system
along with the steering angle.

Figure 1: Geometry of heliocentric coordinate system along
with the steering angle.

Where r is the heliocentric radius of the spacecraft, θ is the
phase angle, υr and υθ are the radial and transverse velocity
components, respectively and α is the steering or thrust
orientation angle. The steering angle is measured relative to the
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(NLP) problem with various transaction schemes applied to 
either states and controls or both states and controls. Since the 
control variables are explicitly parameterized, a good initial 
control guess for direct methods can be easily produced. In 
addition, the modifications of the performance index, equality 
constraints, state and control inequality constraints can be easily 
made for different problem formulations in direct method while 
a new derivation of TPBVP should be obtained in indirect 
method.

Many studies have been progressed for fuel-optimal low-thrust 
interplanetary trajectory optimization by both indirect methods 
and direct methods. In indirect methods, Valadi and Nah 
treated fuel-optimal trajectories for rockets powered by low-
thrust propulsion with variable specific impulse [8]. The optimal 
trajectory design is solved using an indirect, multiple shooting 
method. Jiang et al. presented the fuel-optimal problem of low-
thrust trajectory by the homotopic approach combined with the 
single shooting method as an indirect method [9]. Two examples 
of fuel-optimal rendezvous problems from the Earth directly to 
Venus and from the Earth to Jupiter via Mars gravity assist with 
the constant specific impulse for Bang-Bang control were given 
to substantiate the perfect efficiency of these techniques [10,11]. 
Chi et al., presented a series of optimization methods as indirect 
methods for finding fuel-optimal gravity-assist trajectories that 
use the practical solar electric propulsion with variable specific 
impulse [12]. The fuel-optimal low-thrust gravity-assist 
trajectories are first solved using specific impulse as a control 
variable. Zhu et al. demonstrated a novel continuation 
technique to solve optimal bang-bang control for low-thrust 
orbital transfers that take into account the first order necessary 
optimality conditions [13]. In direct methods, Tang and Conway 
and applied the method of collocation with nonlinear 
programming to the determination of minimum-time, low-thrust 
interplanetary transfer trajectories [14,15]. Patterson and Rao 
solved the orbit-raising optimal trajectory design taken from 
Bryson and Ho with GPOPS-II [16,17]. Guo et al. showed the 
application of hp-adaptive pseudospectral method in the solar 
sail minimum time Earth-Mars transfer trajectory optimization 
[18].

In this paper, the governing equations of the motion are 
normalized for the fundamental distance, velocity, mass and 
time to streamline the numerical computations. In the indirect 
method, the analytical formulations of the problem are 
presented to set up TPBVP using the primer vector theory and 
the necessary conditions for an optimal solution are discussed. 
In the direct method, the bounds of the states, the flight time 
and the control including the maximum available power, the 
equality constraint and the boundary conditions are explicitly 
specified. The optimal control problem is converted to the 
parameter optimization problem that can be solved by 
Nonlinear Programming (NLP). General-purpose optimal 
control software called GPOPS-II is adopted to solve optimal 
trajectory design using variable-order Gaussian quadrature 
collocation methods where the continuous-time optimal 
trajectory design is transcribed to a large sparse nonlinear 
programming problem [19]. Then, the solutions of this problem 
at the different flight time and maximum input powers of the 
spacecraft will be compared and validated for different mission
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instantaneous tangential direction and is positive in the
clockwise direction to the thrust vector. The two-dimensional
equations of motion for the spacecraft in the polar coordinate
system [20,21].

where m is time varying spacecraft mass, ur and uθ are the unit
vector components in the thrust vector, µ is the solar
gravitational constant, which equals to 1.32712441933 × 1011
km3/s2, T is the thrust of the low-thrust system and g0=9.80665
m/s2 is the standard gravitational acceleration. Most variables in
equation m˙ are engine specifications: η is the engine efficiency,
P is the power and Isp is the specific impulse. The power P is
considered to be a variable which ranges from 0 to Pmax, that is
0 ≤ P ≤ Pmax. The thrust magnitude is defined as:

The above equation shows that the thrust magnitude and
specific impulse are inversely proportional. In this study, the
engine efficiency is assumed to be constant while the thrust is
generated. The radial and tangential acceleration components
due to thrust are defined as:

The boundary conditions and the inequality should be specified
for a complete optimization problem. Here, the initial boundary
conditions can be formulated as:

while the terminal boundary conditions are given by:

where tf is the predefined final flight time. The first equation in
Eq. (6) states that the radial velocity should be zero and the
second equation is a boundary condition is that forces the final
velocity to be equal to the local circular velocity at the final
radial distance. The equality path constraint is given by:

Normalized equations of motion: In summary, the normalized
equations of the motion are given by:

where the derivations for the normalized equation of motion are
given in appendix. The normalized initial boundary conditions
can be formulated as:

While the normalized terminal boundary conditions are given
by:

Fuel-optimal optimal control

The fuel-optimal optimal control using a CSI engine is solved by
the indirect method and the direct method, respectively. The
thrust level is determined by the engine power P (0 ≤ P ≤ Pmax).
The input power is always limited by the availability of the
power and the exhaust velocity is constant. From the given
initial time t0 and the final rendezvous time tf, the fuel-optimal
trajectory design problem is to determine the history of thrust
direction u(t) and the input power P that minimizes the scalar
performance index or cost function given by:

subject to the powered equation of motion (8) while satisfying
the boundary conditions of (9) and (10).

Indirect method: For an indirect method solution, a well-
defined TPBVP for the normalized equation of motion (8) and
the boundary conditions (9) and (10) is posed. As the first step,
the Pontryagin’s Minimum Principle (PMP) [12], [22] is applied
to formulate the Hamiltonian given by:

Where,

Lee D

J Aeronaut Aerospace Eng, Vol.14 Iss.1 No:1000368 3



are the costate variables adjoint to the normalized radius, radial
velocity, θ, normalized transverse velocity and mass, respectively.

Where,

According to PMP, the optimal control is derived to minimize
the Hamiltonian over the choice of the thrust direction by
aligning the unit vector u(t) opposite to the adjoint vector,

and the primer vector p(t) is defined, so that

for which,

The two terms in the square bracket of the Hamiltonian in Eq.
(13) is written as H′

Equation (17) is usually rewritten as:

The maximum available power is adopted when SF<0, whereas
the engine is switched off when SF<0 to minimize H′, according
to the PMP. In addition, the thrust magnitude for 0 ≤ T ≤ Tmax
will also depend on the algebraic sign of the switching function
SF.

The Euler-Lagrange equations yield:

From the known initial conditions in Eq. (9) with the known
initial time t0=0 s and the known final conditions in Eq. (10)
with the known final time tf, ten boundary conditions can be
obtained. The transversality condition is applied to pose a well-
defined TBPVP.

subject to dΨ = 0.

Expanding the nonzero terms in Eq. (22) while noting that we
have a Mayer form of the performance index, where,

Using the the terminal boundary conditions, we get the
following boundary conditions:

Substituting Eq. (16) into Eq. (8) and reiterating all differential
equations and boundary conditions give the well-defined
TPBVP:
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and the sign of the switching function SF determines when the 
thruster is turned on or off. The choice of the input power, P 
that minimizes the Hamiltonian in Eq. (17) is then given by the 
bang-bang control law:
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with τ ∈ [0,1]. The above formulation and the parameterization
of the time and allows TPBVP solver known as bvp4c of
MATLAB to solve the TPBVP (25) with the assumed initial and
final dimensional times (τ0) and (τf=1).

Direct collocation pseudospectral methods: In the direct
collocation psedospectral method [16], the continuous-time
optimal control problem is transcribed to a finite dimensional
nonlinear programming problem using well-known software. To
solve this minimum-fuel, low-thrust trajectory optimization
problem with strict constraints, GPOPS-II which adopts a
Legendre-Gauss-Radau quadrature orthogonal collocation
method [19] is used. The continuous-time optimal control
problem is transcribed to a large sparse NLP. The resulting NLP
is then solved by well-known software, SNOPT [23].
Minimization of the cost function (11) is subject to the dynamic
constraints (8) and the equality path constraint,

and boundary condition function are given as:

In this problem, the continuous-time state variables and control
variable are given, respectively as:

where the input power P is also included as a control variable
which can be 0 or Pmax. Unlike the indirect method, P appears
explicitly in the problem formulation. The right-hand side
function of the dynamics, the path constraint function, and the
boundary functions are written, respectively, as:

Finally, the lower and upper bounds on the path constraints and 
boundary conditions are all zero. Because the first seven 
boundary conditions, (b1,...b8), are simple bounds on the initial 
and final continuous-time state, they will be enforced in the 
NLP as simple bounds on the NLP variables corresponding to 
the initial and terminal state. The 8th boundary condition, b8, 
on the other hand, is a nonlinear function of the terminal state 
and thus, will be enforced in the NLP as a nonlinear constraint. 
The NLP occuring from the Radau pseudospectral discretization 
of the optimal control problem given in Eq. (11) and Eqs. (29)-
(31) was solved NLP solver SNOPT.

RESULTS AND DISCUSSION

Numerical results

In this section, the scenarios of the planar Earth-to-Mars orbit 
transfer for the spacecraft with the constant specific impulse 
engine were chosen to validate minimum-fuel, low-thrust 
trajectory optimization at three different input powers and the 
flight times. The Earth-to-Mars orbit transfer problem is applied 
for a rendezvous problem to reach the Mars orbit while the 
initial and final flight times are fixed. For this goal, the direct 
method and indirect method are used to solve the same problem 
and their solutions are compared. The initial and final orbital 
parameters are listed in Table 1. It is observed that the final 
position in the mission orbit (Mars orbit) is not specified since 
the purpose of these simulations is to reach the orbit not the 
Mars. As the forces acting on the spacecraft, the Sun’s gravity 
and the thrust produced by the engines are considered. The 
spacecraft is assumed to have initial mass 1500 kg and the CSI
engine with Isp=3300 s and the constant thruster efficiency, 
η=0.7. The used input powers and the corresponding flight time 
are listed in Table 2. The input powers and flight time conditions 
of the scenario 1, 2 and 3 are listed in Table 2. The scenario 1 has 
19 kW of input power and 240 days of flight time, the scenario 2 
has 7.5 kW of input power and 365 days of flight time and the 
scenario 3 has 3.6 kW of input power and 2 years of flight time.
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Radius, r (AU) 1 1.525589

Orbital speed, υ (km/s) 29.7847 29.494

Location, θ (deg) 0 -

Table 2: Input powers (P) and flight times (tf)

Scenario Input power (kW) Flight time (days)

Scenario 1 19 240

Scenario 2 7.5 365

Scenario 3 3.6 2×365

refinement history with ”hp-PattersonRao” method [19], [24]. 
Figure 3 shows the solution to the scenario 1 using bvp4c of 
MATLAB as the TPBVP solver in an indirect method when 
10,000 mesh points are used. The dimensional state variables in 
Eq. (1) are plotted in Figure 3 (a). The unit vector of the thrust 
as the low-thrust transfer control variables, the in-plane thrust 
angle and the control acceleration are plotted in Figure 3 (b), (c) 
and (d), respectively. Between 88.9 days and 155 days, the 
control acceleration is zero and the spacecraft mass is constant 
while the in-plane thrust angle changes smoothly unlike the in-
plane thrust angle change in Figure 2 (c). However, it is due to 
numerical computation difference which is not remarkable. 
Figure 3 (e) shows an optimal low-thrust Earth-to-Mars transfer 
trajectory in the heliocentric coordinate with the Earth and Mars 
orbits, which matches with the one in Figure 2 (e) by GPOPS-II. 
The thrust direction in the trajectory represented with the red 
arrows is not clearly visible due to so many numbers of mesh 
points. But they show clear unit vector direction along the 
trajectory when they are magnified. Figure 3 (f) shows a 
switching-function for a two-burn sequence and thrust 
profile using Eq. (18b), which follows the Bang-Bang 
control law and matches with the result in Figure 2 (f). Thus, the 
solutions to the scenario 1 using the direct method and indirect 
method are numerically matching.
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Figure 2 shows the solution to the scenario 1 using GPOS-II 
with NLP solver SNOPT and a mesh refinement tolerance 10-8. 
The circle in this Figure 2 represents the locations of 
collocations by a variable-order adaptive pseudospectral method 
[24]. The dimensional state variables in Eq. (1) are plotted in 
Figure 2 (a). The unit vector of the thrust as the low-thrust 
transfer control variables, the in-plane thrust angle and the 
control acceleration are plotted in Figure 2 (b), (c) and (d). 
Between 88.9 days and 155 days, the control acceleration is zero, 
the spacecraft mass is constant and the control is discontinuous 
while the thrust is off. Figure 2 (e) shows an optimal low-thrust 
Earth-to-Mars transfer trajectory in the heliocentric coordinate 
with the Earth and Mars orbits. It shows the trajectory in black 
curve with the red arrows representing the thrust magnitude and 
direction. Figure 2 (f) shows a switching-function computed with 
Eq. (18b) for a two-burn sequence and thrust profile following 
the bang-bang control law by Lawden’s primer vector theory. In 
general, costate variables in an direct method is not computed 
in a direct method. However, GPOPS-II provides the costate 
variables which are used to compute the switching function 
(18b). Figure 2 (g) shows the thrust and input profiles where the 
maximum input power was constantly used by 19 kW while the 
switching function was positive. Figure 2 (h) show the mesh 
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Table 1: Earth and Mars orbits for the evaluations of the optimization methods.



Figure 2: Solution to the scenario 1 using GPOS-II with NLP
solver SNOPT and a mesh refinement tolerance 10-8.

Figure 3: Solution to the scenario 1 using bvp4c of MATLAB.

Figure 4 shows the solution to the scenario 3 using GPOS-II
with NLP solver SNOPT and a mesh refinement tolerance 10−8.
The dimensional state variables in Eq. (1) are plotted in Figure 4
(a) for 2 years longer than the flight time in Figure 2. The unit
vector of the thrust as the low-thrust transfer control variables,
the in-plane thrust angle and the control acceleration are plotted
in Figure 2 (b), (c) and (d). Between 505.3 days and 653.2 days,
the control acceleration is zero, the spacecraft mass is constant
and the control is discontinuous while the thrust is off. Figure 4
(e) shows an optimal low-thrust Earth-to-Mars transfer trajectory
in the heliocentric coordinate with the Earth and Mars orbits
while more than one spiral trajectory around the Sun was
generated. Figure 4 (f) shows a switching-function computed
with Eq. (18b) for a two-burn sequence and thrust profile
following the bang-bang control law. The thrust profile is thrust-
on-off-on sequence depending on the sign of the switching
function SF. Figure 4 (g) shows the thrust and input profiles
where the maximum input power was constantly used by 3.6 kW
while the switching function was positive. Figure 4 (h) show the
mesh refinement history with more mesh point locations than
those of Figure 2 (h).
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Figure 4: Solution to the scenario 3 using GPOS-II with NLP
solver SNOPT and a mesh refinement tolerance 10−8.

Figure 5 shows the solution to the scenario 3 using bvp4c of
MATLAB as the TPBVP solver in an indirect method when
15,000 mesh points are used. The state variables in Figure 5 (a)
match with the state variables in Figure 4 (a). The control unit
vector u(t) and in-plane thrust angle are shown in Figure 4 (b)
and (c). The control acceleration is zero and the spacecraft mass
is constant between 505.3 days and 653.2 days. Figure 5 (e)
shows an optimal low-thrust Earth-to-Mars transfer trajectory in
the heliocentric coordinate with the Earth and Mars orbits,
which matches with the trajectory in Figure 4 (e). The thrust
direction in the trajectory represented with the red arrows are
not clear either due to so many numbers of mesh points. But
they show clear direction along the trajectory when they are
magnified. Figure 5 (f) shows a switching-function for a two-burn
sequence and thrust profile, which matches with the result in
Figure 4 (f). It is obvious to observe the thrust is off while the

switching function SF is negative and the thrust is on while the
switching function SF is positive. Therefore, the solutions to the
scenario 3 using the direct method and indirect method are also
numerically matching like the solutions to the scenario 3 using
the both methods.

Figure 5: Solution to the scenario 3 using bvp4c of MATLAB.

However, the solutions to scenario 2 are not given by the figure
results. Instead, the solution values using both the direct and
indirect methods are listed in Table 3. It shows the ∆v and the
propellant mass for the scenario 1, 2 and 3, respectively using
the direct and indirect methods. The numerical integration of
the control acceleration is computed as ∆v using,

In three chosen scenarios, numerically almost matching values
of ∆v and the propellant mass, mp were obtained. As the flight 
time increases in the scenario 1, 2 and 3, ∆v and the propellant
mass (mp) decreased. Thus, the fuel consumption could be more 
saved in the longer flight time and smaller input power.

Scenario ∆v (km/s) mp (kg)

Indirect method Direct method Indirect method Direct method
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Scenario 1 9.47 9.469 380.558 380.559

Scenario 2 7.001 7.005 292.01 292.028

Scenario 3 5.694 5.693 241.97 241.97

CONCLUSION
In this paper, minimum-fuel, low-thrust Earth-to-Mars trajectory
optimization in the heliocentric two-dimensional polar
coordinate system for the spacecraft with constant specific
impulse engine have been studied. For the solutions of the
optimal control problem, a well-defined TPBVP was derived as
an indirect method and GPOPS-II with NLP solver, SNOPT was
employed to solve the same problem as a direct method without
a derivation of the TPBVP. Three Earth-to-Mars orbit transfer
scenarios with different flight time and input powers were
chosen to verify minimum-fuel, low-thrust trajectory
optimization using both the direct method and the indirect
method. Numerically matching optimization results were
obtained by both methods with the same on-off-on thrust
sequence where the primer vector theory holds. The results are
useful for broad trajectory search using the CSI engine in the
preliminary phase of mission designs.
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