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The host inflammatory response can be self-limited or progress to

immunological and inflammatory diseases. It has been well known that
humoral anti-inflammatory mechanisms, including IL-10, TGF-β1,
glucocorticoids and other cytokine inhibitors, can protect tissue
against cytokine-induced damage in humans. Recent advances have
identified a brain to immune system mechanisms, termed cholinergic
anti-inflammatory pathway (CAP). Briefly, the vagus nerve senses and
conveys the inflammatory signal to the brain, and the brain, via vagal
secretion of acetylcholine (ACh) which binds a7 nicotinic receptors on
macrophages (α7nAchR), suppresses peripheral cytokine production
and guard against tissue damage [1,2]. The brain maintains immune
homeostasis via in real time monitoring and adjusting the
inflammatory response, and this regulation manner is quicker, effective
and localized when compared to humoral ones. Activation of this
‘‘cholinergic reflex’’ has been found effective in various inflammatory
disease such as sepsis, rheumatoid arthritis, Crohn’s disease, and
cerebral and myocardial ischaemia. However, vagus nerve stimulation
in humans is an invasive procedure and is not feasible under many
circumstances. Pharmacological activation, such as nicotine, a non-
specific α7nAchR agonist, is associated with severe side effects and
toxicity. Novel specific and effective targets activating CAP are still
needed for the therapeutic interventions in inflammatory diseases.

MicroRNAs (miRNAs) are non-coding transcripts of 18-25
nucleotides, and they usually target mRNAs to modulate gene
expression by 1.2 to 4.0 fold rather than acting as on-off switches for
genes. miRNAs have been found to contribute to both neuronal and
immune cell fate [3], but their involvement in the neuroimmune
interface of CAP remains largely unknown. Several miRNAs assisting
vagal cholinergic anti-inflammatory activity, named cholinomiRs, has
been identified only recently [2], especially miR-124 and miR-132.
They are reported to be induced by LPS challenge and their treatment
could potentiate the CAP and attenuate inflammation [4-6].

α7nAChR is essential for the cholinergic anti-inflammatory action
[2]. Downstream signal molecules that link α7nAChR activation and
pro-inflammatory cytokine production will be potential targets for
therapeutic interventions that modulate inflammatory responses.
MiR-124 is reported to be induced after LPS and α7nAChR activation,
which in turn targets signal transducer and activator of transcription 3
(STAT3) and TNF-α converting enzyme (TACE) and reduces IL-6
production and TNF-α release [4]. MiR-124 knockdown abolished the
nicotine’s cholinergic anti-inflammatory action in LPS-triggered

macrophages and mice. Furthermore, miR-124 overexpression could
significantly increase the survival rate of mice that were given a lethal
dose of LPS [4]. Therefore, miR-124 might be a valuable target in
treating sepsis. Moreover, miR-124 shows therapeutic potential in
other inflammatory-related diseases. MiR-124 mediates the protective
role of nicotine in DSS-induced mice colitis [7], and miR-124
reduction promoted inflammation and pathogenesis in ulcerative
colitis patients [8]. Abnormal expression of miR-124 is also found in
rheumatoid arthritis (RA) patients and ankylosing spondylitis (AS)
patients. Forced expression of miR-124 repressed adjuvant-induced
arthritis (AIA) in rats by decreasing synoviocyte proliferation,
leukocyte infiltration, and cartilage or bone destruction through
suppressing RANKL and NFATc1 [9-11]. MiR-124 overexpression
suppresses experimental autoimmune encephalomyelitis (EAE) by
deactivating microglia, a kind of macrophages resident in the brain
and spinal cord, via the C/EBP-α-PU.1 pathway [12]. Microinjection of
miR-124 into the peritoneum, which then be transported by
macrophages to the site of spinal cord injury, could decrease the
infiltration of macrophages and therefore ameliorate spinal cord injury
[13]. MiR-124 also shows its therapeutic effect in the treatment of
glioma, B-cell lymphomas and even liver cancers by regulating STAT3
or other targets [14-16]. Therefore, miR-124 is a promising candidate
target for a broad spectrum of inflammatory diseases.

ACh is the neurotransmitter activating α7nAchR in the CAP. It is
hydrolyzed by acetylcholinesterase (AChE), therefore, AChE inhibition
restricts inflammation by enhancing the cholinergic anti-inflammatory
action. MiR-132 is the first miRNA that has been experimentally
validated as targeting AChE. It can be induced by LPS exposure in
leukocyte of both mice and human, which then targets AChE to
attenuate inflammation. Transgenic mice overexpressing 3’UTR null
AChE exhibited higher tissue AChE acitivity, excessive inflammatory
mediators and impaired cholinergic anti-inflammatory regulation
despite normal miR-132 levels [17]. MiR-132 also inhibits LPS-induced
inflammation in alveolar macrophages by decreasing AChE level and
enhancing cholinergic anti-inflammatory pathway [18].
Correspondingly, miR-132 modulates vagal tone and consequently
inflammation in inflammatory diseases. MiR-132 levels are higher
while cholinergic status and AChE activity were lower in inflammatory
bowel disease (IBD) patients [19]. MiR-132 increases in RA patients as
well [20]. Downregulation of miR-132 associates with EAE severity,
and miR-132 mediates the 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD)-induced anti-inflammation effect and attenuation of EAE
[21]. During wound healing, miR-132 facilitates the transition from
the inflammatory to the proliferative phase by regulating a large
number of immune response- and cell cycle-related genes [22]. In viral
or bacterial-infected cell/tissue, miR-132 is induced [23], which then
inhibits both inflammatory cytokines and antiviral genes. Thus,
miR-132 seems to be an attractive target for designing therapies aimed
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to restore the cholinergic anti-inflammatory reflex in various
inflammatory conditions [2]. Besides miR-132, miRNA-199a also
suppresses cholinesterases to increase cholinergic signaling, resulting
in decreased expression of proinflammatory cytokines [24]. Over 200
miRNAs are identified to target different cholinesterease transcripts,
and most of them remain to be validated in the future [25].

In addition, MiR2055b is also reported to be involved in the
cholinergic anti-inflammatory action. MiR2055b expression
significantly increased following the activation of α7nAchR in
macrophages [26]. It is a critical mediator of cholinergic anti-
inflammatory activity in late sepsis by targeting HMGB1, suggesting
that it is also a potential therapeutic target for the treatment of
inflammatory diseases.

The ‘‘micromanagement’’ of brain to immune system attracts special
attention. MiR-124 and miR-132 has now been termed as
“cholinomiRs”, which modulates both neuronal and immune processes
and acts as negotiators between these two interacting compartments.
There are other miRNAs (eg. miR-125b and miR-146a) involved in the
neuroimmune interface which may also participate in the CAP [27].
By mimicking the activation of α7nAChR or manipulation of AChE
level, they could be beneficial for various pathological conditions,
including inflammation, depression and anxiety, neurodegenerative
diseases [2,28]. This editorial emphasizes the role of miRNAs in CAP
and hopes to avail opportunity of using these “cholinomiRs” in the
treatment of inflammatory diseases.
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