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The human retina, as a part of the central nervous system, is 
distinctively designated to the initiation of the visual processing. In 
accordance with its complex anatomy and physiology, a broad number 
of coding and noncoding regions of the genome have been implicated 
in the heterogeneous pathogenesis of several retinal degenerative 
diseases, i.e., monogenic disorders, such as the various Mendelian-
inherited forms of retinitis pigmentosa (RP), and multifactorial 
polygenic/environmental disorders, such as age-related macular 
degeneration (AMD) and pathologic myopia (PM). Both occurrence 
and progression of these chronic vision-threatening diseases can 
be influenced by genetic and epigenetic factors, affecting different 
retinal and sub-retinal structures: the neural retina (NR), composed 
by the inner neurosensory layer with its vascular capillary nets and 
the outer photoreceptor cells (PRCs) layer with the underlying retinal 
pigment epithelium (RPE), which is separated from choriocapillaris by 
a modified basement stratum named Bruch’s membrane (BM), while 
the supporting glial Müller cells span the NR from external to inner 
limiting membranes sealing the axonal fibers of the retinal ganglion 
cells from the vitreous. The diverse retinal degenerations primarily 
involve a specific target-structure: (i) RP phenotypes are primary caused 
by damages of PRCs; (ii) AMD lesions depend on degenerative RPE 
modifications; (iii) PM-related scleral expansion irreversibly modifies 
the RPE-BM complex. Both health and function of the human retina 
rely on a collaborative interaction among diverse classes of molecular 
regulators.

Starting from 1993, small non-coding endogenous RNAs of 
approximately 21-25 nucleotides in length, named microRNAs 
(miRNAs), have been recognized as key factors of posttranscriptional 
gene regulation in mammalian genomes. At present, our knowledge 
about either origin or functions of circulating exosomal miRNAs is 
going to be implemented, and there are several investigative methods 
that allow the identification of miRNAs contribution to heterogeneous 
disorders. The perceived opportunity appears especially large in 
neoplastic diseases [1-6], even if the evaluation of diagnostic specificity 
and reproducibility of miRNAs assessment remains a work in progress 
[7,8]. In the last years, transcriptome analyses have documented the 
presence of several miRNAs expressed in the human adult retina, 
indicating the pivotal role of miRNAs as regulators for homeostasis, 
function and survival of the differentiated cell types at the level of mature 
retinal and sub-retinal tissues [9,10]. The demanding physiologic tasks 
of the retina postulate the action of a continuous gene regulation to 
render its perennial post-mitotic cells less vulnerable to premature 
damage or death secondary to the most frequent causes of irreversible 
low-vision and blindness, i.e., AMD, PM, and RP [11,12]. Moreover, 
because miRNAs are involved in transferring inflammatory signals 
among cells, they may have a crucial prognostic value in the above-
mentioned diseases, whose modalities of onset and/or progression are 
invariably related to complex para-inflammatory processes [13-22]. 
Particularly, in Alzheimer’s disease and AMD, a group of five miRNAs 
(miRNA-9, -34a, -125b, -146a and -155) has been found up-regulated 

during several independent experimental tests, indicating the presence 
of progressive inflammatory damages in both pathologic patterns of 
these age-related neurodegenerative disorders [23].

In an all-embracing view, this scenario highlights the potential 
relevance of miRNAs to advance the clinical management of the most 
severe retinal diseases. Notionally, the pathogenic mechanisms of 
each different retinal disorder express specific miRNA-genes inside 
pathologic cells. Part of these expressed miRNAs are then secreted by 
exosomes and become circulating miRNAs, which can be detected in 
patients’ serum samples as biomarkers of vision-threatening diseases. It 
has been shown that altered miRNA expression patterns in the human 
fluids might be the result of various eye disorders. Recent studies 
are beginning to document the possible role of circulating miRNAs 
as biomarkers for both pathologic conditions and severity of disease 
progression. It is very challenging to approach the question whether 
each cell type of the retinal complex has its own miRNA phenotype, 
since one miRNA can target different gene products that might be 
expressed in different microstructures. Although some patterns 
of miRNAs expression have been tentatively labeled as distinctive 
signatures of specific retinal cell types [24-30], no unequivocal data 
have been hitherto obtained in patients on the correlations between 
dysregulated miRNA profiles and pathologic retinal phenotypes, 
i.e., AMD [31-33], PM [34], and RP [35,36]. The miRNAs identified 
in human serum and plasma is known to be relatively stable, as they 
have been found to be resistant to RNAase degradation, even in stored 
samples. This remarkable extracellular stability has made miRNAs 
desirable candidates for epidemiological and clinical studies, indicating 
their potential role as non- or minimal-invasive biomarkers particularly 
because small serum or plasma samples are needed for miRNAs 
profiling. However, despite a multitude of investigations of basic 
research, there are only few independent validation studies on blood-
born miRNAs as disease biomarkers. Toward clinical applications in 
ophthalmology numerous obstacles still need to be overcome, starting 
from the lack of data resulting from trials conducted on homogeneous 
study groups. Because no study has been hitherto conducted in 
patients with retinal degenerative disorders to assess the degree of 



Citation: Parmeggiani F, Nadai KD, Tognon M (2016) MicroRNAs as Potential Biomarkers and Innovative Therapeutic Targets in Retinal Degenerations. 
Biochem Pharmacol (Los Angel) 5: 204. doi:10.4172/2167-0501.1000204

Page 2 of 3

Volume 5 • Issue 2 • 1000204
Biochem Pharmacol (Los Angel), an open access journal
ISSN:2167-0501 

intra-individual consistency in correlating the clinical changes in 
diseases’ expressivity with putative modifications of miRNAs profile, 
this comparative approach of investigation should be recommended 
to advance our levels of knowledge and to provide concrete answers 
about the translational potentialities of miRNAs, as recently advocated 
by Andreas Keller and Eckart Meese emphasizing a very challenging 
question: "Can circulating miRNAs live up to the promise of being 
minimal invasive biomarkers in clinical settings?" [8].

Circulating miRNAs vary in their expression and concentration 
in serum samples, and these variations indicate the potential role of 
miRNAs as biomarkers of pathologic status vs. health condition. 
Indeed, several investigations have been recently conducted on 
patients suffering from cancers, infections, cardiovascular, metabolic, 
neurodegenerative or genetic diseases, in which miRNAs were 
found variably dysregulated compared to those detected in healthy 
controls [23,37-55]. Expression of circulating miRNAs may change 
in the course of the pathologies exemplified above and/or their 
complications. In this context, it is important to note that, during the 
period of illness, circulating miRNAs can be modified either at the level 
of their panel expression or at the single-miRNA concentration. The 
detection of dysregulated circulating miRNAs could have application 
in early diagnosis and progression of retinal degenerations, as already 
shown for other degenerative disorders of the central nervous system 
[23,50-52]. Just for example, starting from the available knowledge 
about a multifactorial degenerative disease characterized by both 
environmental and gene-related pathogenetic mechanisms such as 
AMD [14-16,18], the future steps for translational miRNAs application 
might be focused on the ability of correlating differences in miRNAs 
profiles to: (i) status of AMD patient versus matched healthy control; 
(ii) morpho-functional deteriorations of RPE cells and/or PRCs layers 
characterizing the dry AMD forms; (iii) occurrence of choroidal 
neovascularization complicating the wet AMD forms. Considering 
both technology and cost of the analyses, the miRNAs detection in 
serum samples of patients with disorders of neural ocular structures 
has the potential to become an affordable approach. It may be especially 
helpful when the eye disease is asymptomatic or paucisymptomatic and/
or when it is characterized by critical patterns of heterogeneity. In these 
cases, the detection of one or more dysregulated circulating miRNAs 
could be used as a specific parameter to facilitate the phenotypic and/
or genotypic interpretation of the disease, and the ophthalmologists 
may benefit of these new diagnostic parameters/tools. At the same 
time, miRNAs are now investigated as potential target for innovative 
therapies. One of the most promising experimental strategies foresees 
the use of liposome-like structures loaded with anti-sense miRNAs 
when a specific miRNA is over-expressed. On the other hand, the 
same strategy with liposomes loaded with miRNAs can be used when 
a specific miRNA is down-expressed, with the aim to re-establish the 
normal level of miRNAs. It is noteworthy to recall that miRNAs play an 
important role during the expression process of different genes. It has 
been shown that more than 2,000 genes encode for miRNAs which, in 
turn, recognize distinct and multiple mRNAs as targets. This biological 
process is crucial for the cell because the protein production is affected 
by the amount of mRNA, which is translated at the ribosomes level. In 
this context, the protein concentration and bioavailability into the cell 
is determined by the accessible amount of the specific mRNA. More 
recently, it has been shown that miRNAs can be "secreted" by cells with 
exosomes, which are liposome-like particles filled of specific miRNAs 
and circulating into the blood stream. This loop resembles the so-called 
autocrine and paracrine loops, employed by the cells for their cell-
to-cell talks with growth/differentiation factors. It represents one the 

main mechanism used by a living cell to control its development and 
functions, as well as to maintain its homeostasis. Similarly, miRNAs are 
released by cells with exosomes to reach new cells, in distant or near 
tissues, using the blood/serum/plasma as a vehicle. This mechanism 
ensures a sort of equilibrium mediated, at distance, by miRNAs. 
In case of altered equilibrium, a specific pathology may occur. This 
alteration can be used to recognize a serum miRNA as parameter/
biomarker for diagnostic and/or prognostic purposes. Indeed, by 
improving our understanding about the pathogenesis of AMD, PM 
and RP, together with the clinical laboratory-based screening and 
the forthcoming development of new therapeutic strategies, it will be 
possible to ameliorate the clinical management of numerous patients at 
high risk of low-vision and blindness. In the near future, new miRNA-
based assays, which are highly sensitive and specific, might be able to 
attain a "customized" classification of the different eye diseases. The 
study of miRNA biomarkers implicating in pathogenesis, diagnosis 
and prognosis of retinal degenerations represents a translational topic 
of increased research interest, especially because miRNAs themselves 
might be considered as therapeutic targets or even therapeutic agents as 
anti-miRNAs. In view of these elements of miRNA-related exploratory 
context, additional studies will help us in assessing miRNAs potential 
as upstream regulators and/or downstream targets of the common 
vision-disabling diseases.
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