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Microparticles are small (<1.5 μm), anuclear cell vesicles that 
are released by several cell types during cell activation and apoptosis 
and that can be associated by their surface receptors to their cells of 
origin (e.g. platelets, endothelial cells, leukocytes) using flow cytometry 
[1-3]. Initially, it was believed that microparticles are a kind of cell 
debris without any distinct pathological function [4]. However, an 
increasing number of publications indicate that MP release is a highly 
regulated process and that circulating microparticles indeed have 
multiple distinct functions in haemostasis and vascular inflammation 
[5]. Even though the precise molecular mechanisms of microparticle 
release are still incompletely understood, it is evident that this process 
starts with a Ca2+ influx into the maternal cells. This Ca2+ influx results 
in an inactivation of the flippase, an enzyme that is essential for the 
asymmetric distribution of phosphatidylserine of the bilayer cell 
membrane, and an activation of calpain leading to a dissociation of 
cytosceletal protein actin with glycoproteins of the cell membrane. 
These two Ca2+ triggered effects finally result in cell bleb formation 
and microparticle release into circulation. As a consequence of the 
decreased flippase activity, the outer microparticle membrane is rich 
of Phosphatidylserine (PS), a unique characteristic that can be used 
to stain microparticles for flow cytometric analysis but furthermore 
results in a strong pro-thrombotic microparticle effect, as it activates 
pro-thrombin to thrombin. 

Within the last decades it has become evident that microparticles 
are potent promoters of vascular inflammation and coagulation [6,7]. 
Consequently, increased levels of microparticles have been found in 
multiple inflammation triggered disease, such as sepsis, SIRS occurring 
after cardiopulmonary resuscitation, joint diseases, pulmonary 
hypertension and aortic valve stenosis [8-12]. 

As the early beginning, as well as the progression of several 
cardiovascular diseases is mainly influenced by platelet and leukocyte 
activation and endothelial dysfunction, microparticles of these cells 
have been found to be valuable surrogate markers in these diseases 
allowing detection of sub clinical changes in blood haemostasis. One 
exemplarily study, which underlines the importance of microparticles 
as surrogate markers, was performed by Chironi et al. [13]. They 
investigated leukocyte derived microparticles in patients without 
cardiovascular diseases and found that microparticles of leukocyte 
origin correlate well with sub clinical atherosclerosis. In the same 
line of evidence, Bernal-Mizrachi et al. assessed endothelial derived 
microparticles in patients with Coronary Artery Disease (CAD) [14]. 
They found that endothelial microparticles are increased in patients 
with CAD in comparison to controls and that patients with an acute 
coronary syndrome had higher levels of EMP than patients with stable 
CAD. However, even if there is strong evidence that microparticles can 
be used as surrogate markers in different inflammatory diseases, these 
data need to be confirmed by large clinical multicenter studies using 
standardized methods to assess quantity and surface characteristics of 
circulating microparticles.

Microparticles can not only be used as surrogate markers but also 
act as inflammatory biological vectors in circulation. It has been found 
that microparticles bind to and fuse with distinct target cells suggesting 
that that they thereby deliver cytoplasm and presumably also specific 
surface receptors to their destination cells [15]. As the adhesion of 

microparticles to their target cells is believed to be at least to some extent 
receptor mediated, microparticles of a specific cell type affect most 
likely only a distinct subset of target cells, for example endothelial cells 
or leukocytes. Supporting this hypothesis, Jy et al. assessed the effect of 
platelet microparticles on leukocytes [16]. They found that PMP bind 
to leukocytes, activated those and thereby contribute mainly to cellular 
mediated vascular inflammation. This data was supported by Barry et 
al., who showed that platelet microparticles increase the adhesion of 
monocytes to endothelial cells in a time-and dose-dependent manner 
[17]. Sabatier and colleges investigated the impact of endothelial 
microparticles on the monocytotic cell line THP-1[18]. They showed 
that EMP induce a pro-coagulatory state in THP-1 cells, which was 
inhibited by blocking the endothelial surface receptor ICAM-1 and 
the leukocyte counterpart β2 integrins and thereby support the 
hypothesis of a receptor specific binding behaviour of microparticles to 
their target cells. This MP-induced paracrine activation of leukocytes 
might be the reason, why microparticles have been described in 
several inflammatory and coagulatory cardiovascular diseases, such 
as the aortic valve stenosis, acute coronary syndrome and pulmonary 
hypertension [11,12,14].

A novel mechanism of microparticle triggered vascular 
inflammation has been described by Habersberger et al. [19]. They 
found that pentameric C Reactive Protein (pCRP), which is the non-
active form of CRP, dissociates on the surface of PMP into active 
monomeric CRP. These data nicely show that circulating microparticles 
not only induce cellular inflammation, but also act on plasmatic 
inflammation. However, as it has been shown that microparticles even 
contain mRNA, as well as microRNA, microparticles might even be 
able to directly influence protein synthesis and post-translational gene 
regulation in their target cells [20].

In conclusion, microparticles are small cell vesicles that can be 
used as inflammatory and coagulatory surrogate markers in several 
cardiovascular diseases. Additionally, they represent an elegant way 
of intercellular communication by which biomolecules, protected 
by a lipid membrane from degradation by serum enzymes, can 
be transferred from a paternal cell to a target cell. Consequently, 
microparticles are able to change the phenotype and presumably even 
the gene expressions of their target cells. Future studies are required 
to assess whether a therapeutic reduction of distinct microparticle 
subtypes are associated with a beneficial effect for patients with 
cardiovascular diseases.
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