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Abstract

Microparticles (MPs) are membrane vesicles released by various cell types (platelets, endothelial cells,
monocytes) in circulation, which play inevitable role in thrombosis and vascular inflammation. Literatures so far
suggested MPs as biomarkers of vascular injury and inflammation and also contribute to the initiation and
development of atherosclerosis and its related manifestations. Atherosclerosis is the major underlying
pathophysiology for the various cardio vascular diseases (CVDs). In addition, most recent data suggest a potential
prognostic role of circulating MPs. Present article summarizes briefly about the different MPs and their importance
as markers to check the vascular health in various CVDs. 
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Introduction
Cardiovascular diseases (CVDs) such as coronary artery disease

(CAD) and stroke are the largest causes of death in developing
countries and are one of the main contributors to disease burden in a
population. It has been predicted that between 1990 and 2020, these
diseases to be increased by 120 percent for women and 137 percent for
men in developing countries as compared with 30–60 percent in the
developed countries [1-3]. Atherosclerosis is the main etiology of
cardiovascular diseases. It is now widely accepted that the
development of atherosclerotic lesions involves a chronic
inflammatory response that includes both innate and adaptive
immune mechanisms and is characterized by interactions among
platelets, leukocytes, and endothelial cells [4-6]. This chronic
inflammatory condition can be converted into an acute clinical event
by plaque rupture and thrombosis. Most of the cardiovascular events
occur as a result of plaque rupture, a later-stage complication seen in
atherosclerosis. These plaques are characterized by large, necrotic,
highly thrombogenic lipid cores, thin fibrous caps and increased
numbers of macrophages, T-lymphocytes and platelets [4,7].

Endothelial cell (ECs) dysfunction is a precursor and common
denominator of cardiovascular diseases and is an early event in the
development and progression disease. Under physiological conditions,
vascular endothelium represents a complex regulated surface
maintaining an anti-thrombogenic potential. This pattern is shifted
toward a prothrombotic state with the activation of endothelial cells.
Activation can be due to various agents such as proinflammatory
cytokines, infectious agents, or their components (e.g. LPS).
Endothelial activation is associated with shedding fragments of their
plasma membranes into the extracellular space. Such fragments,
resulting from an exocytotic budding process, are colloquially known
as endothelial microparticles (EMPs) that help in thrombosis. In
various human studies measuring endothelial dysfunction offer
prognostic information with respect to vascular events [7-13].

Platelets represent an important linkage between inflammation,
thrombosis and atherogenesis. Platelets tend to adhere to the damaged
or disrupted endothelial surfaces. Changes in intraplatelet calcium
concentration, as a result of either calcium influx or mobilization of
intracellular stores, are fundamental to process of platelet activation
and precedes several activation responses such as aggregation, shape
change, secretion of internal granules, shedding of microparticles,
expression of P-selectin (CD62P) and procoagulant activity [14,15].
When activated, platelets release potent mitogenic factors such as
platelet-derived growth factor (PDGF), transforming growth factor
beta (TGF-β) and epidermal growth factor (EGF), which lead to
smooth muscle cell proliferation and progression of atherosclerotic
lesions. Although, platelets may not contribute directly to plaque
formation, platelet activation is a feature of atherosclerotic vascular
disease in humans. Cellular activation of platelets by physiological
agonists results in membrane vesiculization followed by shedding of
blebs or microparticles called platelet microparticles (PMPs) and are
known to possess procoagulant activity. MPs have been shown to have
many pathophysiologic effects, including effects on thrombosis, cell
signaling, and angiogenesis [15-18].

In literature, microparticles (MPs) are defined as membrane vesicles
released by various cell types (platelets, endothelial cells, monocytes)
in circulation after cell activation or apoptosis [19,20]. For a long time
MPs have been thought to be as inert debris. However, recent studies
pointed out their importance in exchange of biological signals from
the parent cells to various target cells by direct cell-to-cell contact or
alternatively through secretion of soluble mediators and effectors
[20,21]. MPs have been shown to have many pathophysiologic effects,
including effects on thrombosis, cell signaling, and angiogenesis [22].
An increased concentration of tissue factor (TF), is believed to initiate
and accelerate blood coagulation and fibrin formation. Up to two
thirds of the plasma tissue factor activity is carried on by PMPs [23].
PMPs also have a role in the inhibition of fibrinolysis by expressing
plasminogen activator inhibitor-1 on their surface [24]. Indeed,
experimental evidence points to the role of PMPs in causing further
platelet activation and endothelial dysfunction and in generating an
inflammatory state [22,25]. Plasma MPs also constitute a
phospholipase A2 (PLA2) substrate and lead to lysophosphatidic acid
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production, a strong platelet agonist. MPs, produced in the
atherosclerotic plaques, contribute to lesion progression by
stimulating its neovascularization. In addition, MPs impairs the
release of nitric oxide from the vascular endothelial cells and therefore
affect normal vasculature [26].

A number of studies have demonstrated their direct association
with the severity of various vascular diseases and hence their clinical
importance. This review summarizes current knowledge about the
MPs and their implication as disease markers in reference to CVDs.

Microparticles formation and Composition
Extracellular vesicles are a heterogeneous population of particles

released from various cell types into the extracellular space under both
normal and stressed conditions. On the basis of their size, content, and
mechanism of formation these particles are divided into 3 categories—
exosomes, apoptotic bodies, and microparticles (MPs) [21,27,28].
Present article focuses majorly on the microparticles.

Microparticles (MPs) are released from the cell surface following
cell activation. Activation can be triggered by chemical stimuli, such as
cytokines, thrombin, and endotoxin, or physical stimuli, such as shear
stress or hypoxia. MPs represent a heterogeneous population of
vesicles that ranges from approximately 50-1000nm which circulate in
various biological fluids (plasma, peripheral blood, cord blood, urine,
saliva and cerebrospinal fluid) [27,29]. MPs are phospholipid enclosed
vesicles that originate from endothelial cells, erythrocytes, leukocytes,
megakaryocytes, or platelets. MPs retain certain antigens of their
parent cells. MPs can contain nucleic acids – notably mRNA and
micro RNA (miRNA) – suggesting that they could transfer genetic
material to target cells [28]. An increase in the cytosolic calcium
concentration is one of the factors that trigger the release of MPs. The
origin of MPs is important because MPs with similar shapes and
diameters though derived from different cell types possess unique
functional capabilities. Current nomenclature of cell derived vesicles
was discussed elsewhere [30,31].

MPs production is a tightly regulated and a selective process. Also,
microparticles play important role as mediators of cell-to-cell
communication. MP-associated intercellular communication can take
place through different pathways. They can (i) directly interact with
the ligands present on the surface of target cells and activate cascade
signaling, and (ii) transfer proteins, mRNA, miRNA, and bioactive
lipids by interacting with target cells by either fusion or internalization
[27,32]. Through this latter mechanism, target cells can acquire new
surface antigens and therefore new biological properties and activities.
Details about the communication can be read at references [33,34].

Considering, parallelism between platelet (PMPs) and endothelial
(EMPs) microparticles expression that supports a close interplay
between platelets and ECs in the pathophysiology of CAD, present
article focused on these two MPs.

Platelet Microparticles
Platelet-derived microparticles (PMPs) represent the most

abundant microparticle subtype and their presence reflects platelet
activity and the thrombotic state of a vascular system. Increase in
cytosolic calcium induces a disruption of the membrane skeleton and a
vesiculation of platelets. PMPs contain effector molecules such as
thrombospondin, CXCR4, protease-activatedreceptor-1 (PAR-1), P-
selectin (CD62P), GP5 (CD63), and alpha-granule derived factor Va

[16,28]. The formation of PMPs is associated with the exposure of
binding sites for factors Va, VIII, and X, which leads to procoagulant
activity. Platelet microparticles express GpIb (CD42b), platelet
endothelium adhesion molecule (PECAM-1; CD31), the integrin aIIb
β3 (GpIIb-IIIa) [35], P-selectin (CD62P) [36], CD63, CD41a and
CD61 [37]. Abnormal PMP levels have been shown in patients with
coronary artery disease (CAD) [17,38], diabetes [39], hypertension
[40], peripheral vascular disease [12], severe thrombotic states such as
acute myocardial infarction and stroke [41,42].

Biological role of PMPs extends beyond their participation in
coagulation. MPs interact with endothelial and blood cells and are
involved in the regulation of endothelial function. Stimulation of
endothelial cells by platelet MPs in vitro results in the release of
cytokines, Interleukin-6 (IL-6), and IL-8, and a rise in the expression
of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1), and E-selectin, which in turn have also been
reported to be potential biomarkers in various vascular related diseases
and their related complications [8,11,43-45].

Endothelial Microparticles
Like platelets, endothelial cells also shed fragments of their plasma

membrane known as endothelial microparticles (EMPs). The protein
compositions of EMPs depend on the stimuli that trigger their release.
EMPs carry endothelial proteins such as vascular endothelial cadherin,
platelet endothelial cell adhesion molecule-1, intercellular cell
adhesion molecule (ICAM)-1, endoglin, E-selectin and integrins
[41,46]. Endothelial NO synthase and vascular endothelial growth
factor receptor (VEGF-R2), E-selectin (CD62E) are also expressed by
activated endothelial cells. EMPs are a hallmark of endothelial cell
activation and express CD31, CD54, CD62E and αVβ3 integrins
[41,47].

EMPs also help in endothelial cell survival. EMPs release from cells
results in the diminished levels of caspase-3, thus EMPs contribute to
the sorting of several proapototic factors preventing cell detachment
and apoptosis [48]. With the help of plasmin, EMPs activate matrix
metalloproteinases (MMPs), which in turn help in the extracellular
matrix degradation and tissue remodeling [49].

Microparticles as Biomarkers in Atherosclerosis
Various reports have highlighted circulating MPs levels in

association with different cardiovascular diseases, as a witness of
ongoing pathophysiological processes such as thrombosis,
inflammation, or apoptosis. Changes in circulating levels of MPs
might provide important clinical information in healthy subjects and
in patients with cardiovascular disorders. Several studies identify
plasma levels of endothelial MPs as a surrogate marker of vascular
function.

There is growing evidence that PMPs act as proinflammatory
mediators and pathological factor. PMPs have been demonstrated to
effect vessel walls as they adhere to both the sub-endothelium and
activated endothelial cells through the surface GPIIbIIIa [50]. PMPs
are generated from activated platelets and apart from causing further
platelet activation by a positive feedback mechanism, they have also
been shown to activate the coagulation cascade, inhibit fibrinolysis,
cause endothelial dysfunction and generate an overall inflammatory
state [51]. Katopodis et al. reported that mean PMP levels were nearly
twice as high in the recent MI group and were significantly elevated in
patients with unstable angina as compared to the healthy subjects [14].
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Tan et al. in their study on 59 patients with peripheral artery disease
(PAD) observed no significant correlation of PMPs with hsCRP (C-
reactive protein) and severity of disease, though the PMP levels were
significantly higher in the patient group as compared to the controls
[16]. In type 1 diabetes, total, platelet- and endothelial-derived MPs,
displaying enhanced pro-coagulant activity, are elevated and correlate
with HbA (1c) levels [52]. Increased PMP concentrations were found
to be positively correlated with body mass index in obese women
without specific CVDs risk factors [53].

Elevated EMP (CD 31+/42-) levels were described in a study with
varying severity of coronary artery disease [51]. These authors also
observed a direct correlation between EMP levels and angiographic
imaging and the levels also correlated well with the morphology and
severity of stenosis. In a cross sectional study, Mallat et al. reported
elevated EMPs in patients with acute MI and in patients with unstable
angina [54]. EMP levels also correlated positively with the severity of
the disease and with hsCRP levels [15]. Simak et al. found significant
correlations between EMP levels, lesion volume, and clinical outcome
in subjects with acute ischemic stroke [55]. In addition, in patients
presenting a characterized endothelial dysfunction, levels of
circulating EMP are inversely correlated with the amplitude of flow-
mediated dilatation, independently of age and pressure in subjects
with endothelial dysfunction [56]. Moreover, Amabile et al. reported
EMP expressing E-selctin could predict the 1-year outcome of patients
with pulmonary hypertension [57]. In subjects with high risk of CHD,
EMP baseline levels were demonstrated to predict the outcome,
independently of Framingham score and C-reactive protein and brain
natriuretic peptide levels [58]. Similar results have been found in
patients with chronic renal failure and high values of CD31+CD41-

EMP that were independent predictors of death and major
cardiovascular events [59]. Detailed analytic approach focusing on
characterizing the cellular origin, number, size, and functional activity
have been recently discussed somewhere else and beyond the scope of
this article [25,31].

Based on the review of literature cited here undoubtedly
demonstrate that detection and quantification of MPs is an interesting
and valuable tool to appreciate CVDs risks. However, MPs cannot be
applied for the routine diagnostic of CVDs yet and the clinical utility
of these molecules remains to be established. With a multidisciplinary
approach and the proper verification studies in relevant populations,
microparticles may prove to be true biomarkers of disease state and
progression in near future.

Microparticles and pharmacological interventions
Various studies have reported the effect of certain drugs, used to

decrease CVDs risk, on MP concentrations, suggesting that the
beneficial effects via a reduction of MP concentrations. However, the
cellular mechanisms leading to MP formation and release are not
completely elucidated and it is not yet possible to direct and precisely
target them. Antiplatelets agents, such as thienopyridines (ticlopidine)
or glycoprotein IIb-IIIa inhibitors (abciximab) can decrease platelet
activation and the related platelet microparticle release [60,61].

Other antihypertensive agents (β-blockers, calcium channel
inhibitors) also demonstrated an impact on platelets MP levels [62].
Statins are the drug of choice for CVDs as it has been reported to
exhibit pleiotropic effects [63-66]. In view of the effects of MPs in
atherosclerosis, it is of interest that HMG-CoA reductase inhibitor,
atorvastatin, fluvastatin, parvastatin shown to have preventive effects

[67,68]. Oxidative stress, cardinal feature of many pathological
conditions, also triggers numerous deleterious processes in
atherosclerosis and its related manifestations, leading to endothelial
dysfunction and platelet activation [69]. Treatment with vitamin C (a
known anti-oxidant) for 5 days has reported a decrease of endothelial
and platelet MPs in diabetic and dyslipidaemic patients [70].
Peroxisome proliferator–activated receptors are ligand-activated
nuclear receptors regulating the expression of genes implicated in lipid
and glucose metabolism, and inflammation. PPAR-α and PPAR-γ
agonists are used in clinical practice to improve dyslipidaemia and
type 2 diabetes [71]. The PPAR agonist pioglitazone, bezafibrate
reduced circulating endothelial MPs in patients [72,73]. Production of
matrix-degrading proteases, particularly matrix metalloproteinases
(MMPs), by endothelial cells and other vascular cells is a critical event
during atherosclerosis [74-77]. MMPs are known to be highly
regulated at the level of synthesis and activation [74,75]. Endothelial
cells shed MMP-containing vesicles and this may be a mechanism for
regulating localized proteolytic activity [78], which lead to plaque
disruption and therefore can be explored in near future.

Conclusion
The studies discussed above substantiate PMPs and EMPs as

promising markers of platelet and endothelial activation. In this
review, we have attempted to highlight that increased PMPs and EMPs
are both related to the severity of CAD. However, it is still not clear if
this relationship a cause or effect of atherosclerosis. Therefore, routine
and standardized measurement and critical characterization of
circulating MPs in a large and multi-institutional study cohort will
open up interesting prospects for identification of subjects at high
cardiovascular risk and for assessment of therapeutic efficiency.
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