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Abstract 
Granular matter is ubiquitous in our daily life yet far from completely understood. These granular materials have 

constituted a class of complex systems which exhibit global behaviors been reminiscent of solids, liquids, gases, or 
otherwise uniquely their own. The key to achieve good properties lies in the material structure from the molecules, via 
structures on nano and micro levels to the macroscopic material. This paper also reviewed selected approaches and 
models that have been developed for granular media prediction. However, development of new approaches at the 
micro and nano scales to sense the stress distribution characteristics of complex rock media, especially the grounds 
bearing petroleum resources of Nigeria has been of vital concern/importance to the area of petroleum drilling and 
exploration. By conducting such fundamental level research, development of highly efficient drilling processes with 
potentially much less energy inputs and minimizing the carbon blue prints is the best approach.
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Introduction
Interesting phenomena, not yet well understood take place with 

granular media. Examples include: avalanches, segregation (which 
grains of different type separate under vibration), crystallization (when 
grains arrange into ordered configurations), pattern formation (when 
grains arrange into patterns, such as dunes or ripples) or jamming 
(when the flow of grains stops abruptly) [1]. Micromechanical 
analysis of compaction and particulate/granular materials has been 
of significance to academics and industrial communities, from beach 
sandcastles to chemical, pharmaceutical, food, mechanical, civil, 
mining and petroleum engineering as well as underground reservoir 
industry, and materials processing sectors [2-15]. Granular media are 
thermal, quite normal after all, usually with different particle-scale 
properties and inter-particle interactions, which are responsible for 
their complex behaviors at the low gravitational environment and 
macroscopic scale and difficult to assess experimentally [6,11,12,16-
22]. Several researchers have proposed calibration procedures relating 
the micro parameters to macro properties of the granular material [23-
25]. These granular size and compaction affects the force penetration 
behaviour of drilling equipment’s. The higher the granular size, the 
more the fluctuation in the fine aggregate grains, but increase the 
magnitude of the force fluctuation grains [18]. Under different external 
loading environments, granular media exhibit a variety of unusual 
characteristics at both microscopic and macroscopic scales which make 
them different from conventional solids, liquid and gaseous matter. The 
macromechanical response of a particulate assembly to external shear 
forces compaction forces, mixing forces or discharge processes has been 
reported to be closely related to the micro-mechanical properties of the 
granular system, which are determined by the interactions between the 
particles in the system [26-28].

Advanced particulate numerical modeling methods, such as 
discrete element modeling (DEM) and molecular dynamics, have 
helped in understanding the microscopic origin of shear strength in 
particulate assemblies [4,11,14,15,20,29,30-44]. Although DEM is 
very closely related to molecular dynamics; hence this method has 
generally been distinguished by its inclusion of rotational degree-of-
freedom as well as stateful contact and often complicated geometries. 
Due to a complex particle shape and a complex interaction between 

particles, DEM simulations of clayey soils are difficult and thus, rare 
[40]. DEM has been proven to be more suitable tool than Finite 
Element Method (FEM) and Finite Volume Method (FVM) to simulate 
compaction [45,46]. Some researchers have also used the hybrid 
approaches- a combination of Finite-Discrete Element Methods-
FDEM to analyze geomechanical problems [25,47-53]. FDEM and 
Y-Geo software, despite their limitations (mesh sensitivity, lack of
hydro-mechanical coupling and fluid propagation in the cracks, long
computational times), has effectively simulated complex rock slope
instability problems from triggering, initiation, evolution, run out
and deposition processes [47,54]. Engineering understanding on the
mechanical strength characteristics of rock masses and other natural
composites due to the formation of cracks and openings, and how they
get influenced due to nano-particle fillings (such as Nigeria natural
clay) are of high importance in petroleum drilling operations. To the
best of our knowledge, there is no existing continuum constitutive
model that reproduces all of these behaviors. However, since the DEM
involves many individual particles and interactions between them, it is
computationally expensive and therefore it is not applicable to large-
scale problems [25]. Disadvantage of the DEM model is the lack of a
systematic method for an objective determination of micro material
parameters. As opposed to the continuum-based models for which
the strength and elastic properties can be determined directly from
laboratory testing, the micro properties cannot be determined by direct 
measurements of the macro responses on the laboratory specimens.

Many reservoir engineers and tectonic encounter this complex 
problem to predict both the occurrence and extent of inelastic 
deformation and failure hinges upon a fundamental understanding of 
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the phenomenology and micromechanics of compaction in reservoir 
rock [53,55]. The consequences of such inelastic compaction can 
be economically severe and include surface subsidence and various 
production problems [56]. Significant reduction of permeability may 
also accompany the compaction [57]. Well instability is caused by 
narrow fractures in sandstone from 1/16 to 1/12 inches wide while 
drilling through the granular media (Figure 1). If the mud weight is 
larger than anticipated, the mud will invade into the formation, causing 
tensile failure of the formation. On the other hand, a lower mud 
weight can result in shear failures of rock, which is known as borehole 
breakouts. To predict the potential for failures around the wellbore 
during drilling, one should use a failure criterion to compare the rock 
strength against induced tangential stresses around the wellbore at a 
given mud pressure. The Mohr-Coulomb failure criterion is one of 
the commonly accepted criteria for estimation of rock strength at a 
given state of stress [58,59].  Basically modified the M-C criterion by 
absorbing the critical state defined, and then quantifying the necessary 
deviation from the linear form, using a large body of experimental test 
data [60,61]. A similar criterion for the shear strength of rock masses, 
with  σc  for the rock mass potentially based on the simple formula 
5γQc

1/3  (where Qc  = Qσc/100 (MPa)) [62]. They reported that based 
on six parameters involving relative block size, inter-block friction 
coefficient and active stress, the rock density is γ, and Q  is the rock 
mass quality [63]. It is observed that the rock properties which govern 
drilling rate are not completely understood. Furthermore, correlation 
is lacking between strength and elastic properties as measured at 
laboratory conditions and those which exists at the depths of interest to 
the oil industry. Usually mechanical activities such as sandstone drilling 
induce additional stresses within sandstone beds. When stresses acting 
on the sandstone exceed their critical strength, it fractures. Considering 
that World’s Petroleum drilling operations, most especially that of 
Nigeria often encounter layers of granular media, excessive fracture of 
them is thought to result into significant levels of financial losses for 
Petroleum industry due to wellbore instability caused by high level 
of stress concentration at the crack location- this is one of the major 

problem to overcome in the Nigerian oil` industry as of now. Despite 
extensive studies reported in this field, new understandings on the 
crack initiation and propagation characteristics of rock masses under 
mechanical loading is lacking and it has been the most challenging tasks 
in designing engineering structures from moderately to heavily jointed 
rock [64]. One of the methods presently explored in many parts of the 
world is to use particulate materials, either manufactured artificially or 
in natural form as a healing agent of cracks in rock masses. However, it 
is not yet well known on how natural particulates such as these naturally 
available Nigerian bentonite clay particles could retard the propagation 
of cracks in rock media. It is important to recognize that Nigeria 
has natural bentonite available in abundance. Hence the above said 
problem in Nigerian petroleum drilling rock masses can be effectively 
solved by utilizing the natural minerals available in Nigeria or using 
other nano-particles if we develop comprehensive level understandings 
of the strength characteristics of rock mass using advanced sensing 
techniques. At first, this requires establishing a suitable methodology 
by which stress concentration factors on real rock sample material 
under different loading pressures can be quantified and bench marked 
to evaluate their efficiency under real processing/operating conditions. 
The current state of measuring stresses on rock masses due to external 
loading is using conventional strain gauges at selected number of 
points, and then converting these discrete measures to component of 
stress acting along the direction of the strain gauge mounting, which is 
a cumbersome procedure with limited applicability. Qiujiao has applied 
the use of a sensor to monitor stress-strain signals in a granular medium 
and detection of seismic precursory information [65]. When compared 
with the widely used sensors of borehole stress in the rock, the sensor 
has more convenient operation, higher output sensitivity, compactness 
and farther propagation effect. However, development of a bench mark 
system by which whole field stress measurements on rock masses can be 
made is very necessary and methods to be implored/adopted in order 
to get the desired results is by using nascent computational methods 
and photonic stress (sensor) analysis with the aid of advanced software 
packages [66-69].

 Figure 1: Schematic illustration of formation of cracks during petroleum drilling operations.
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Conclusion
A fundamental understanding of micro-macromechanical 

compaction and drilling of granular media has been of centrality to a 
number of issues in reservoir and geotechnical engineering for which 
deformation and fluid transport are intimately related. It has been 
observed that estimation of granular media such as rock mass behaviour 
is still a challenging one. However, the consequences of such inelastic 
compaction could be economically severe, include surface subsidence 
and various production problems and therefore, extensive researches 
in this areas of compaction and drilling of granular media shouldn’t 
be overlooked in that it is the central point for engineering profession.
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