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Abstract
Macrophages are critical for the initiation and perpetuation of intravascular inflammation through their ability to 

produce an array of cytokines and chemokines, to generate reactive oxygen species, and to process and present 
antigens to CD4+ T cells. Macrophages constitute a heterogeneous population of cells that are distinctly activated by 
various microenvironmental signals; however, the mechanisms contributing to the generation of distinct macrophage 
phenotypes in the context of atherosclerosis remain unclear. This review summarizes the well-characterized factors 
that govern macrophage polarization toward a specific phenotype and function. Understanding the microenviromental 
factors that control macrophage polarization and the precise roles of distinct macrophage subsets could provide the 
basis for novel treatment strategies aimed at limiting the progression of atherosclerosis. 
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Introduction 
Atherosclerosis and associated cardiovascular disease (acute 

myocardial infarction and stroke) are the leading causes of death in 
developed countries, and it has been estimated that by 2020 these 
disorders will be the main healthcare and socio-economic problem 
world-wide, in part due to progressive societal aging. It is well-
established that progression from early lesion to vulnerable plaque 
involves the participation of numerous cellular and molecular 
inflammatory components. The most prominent immune cells that 
invade lesions are monocyte-derived macrophages (representing up 
to 60% of atheroma plaque mass) and T-lymphocytes. Both cell types 
produce a wide array of soluble inflammatory mediators (cytokines, 
chemokines) that are critical for disease initiation and progression. 
For this reason, atherosclerosis is now regarded not simply as a lipid 
metabolism disorder, but also as a chronic inflammatory disease, 
and macrophages play a central role in the atherogenic process as 
modulators of both lipid metabolism and immune responses [1,2] 

Macrophages, the mature form of peripheral blood monocytes 
within tissues, are specialized phagocytic cells involved in multiple 
processes, both in homeostatic conditions and during the immune 
response induced by tissue damage or exposure to pathogen [3,4]. 
Macrophages acquire specialized phenotypes in response to signals 
from the local microenvironment that polarize them toward a specific 
activation state. Activation with IFNγ, alone or in combination with 
pathogen-derived signals such as LPS, leads to classical-activated 
macrophages, also known as M1 cells, which participate in pro-
inflammatory type 1 immune responses. Exposure to other immune 
signals results in profoundly different phenotypes. These include 
‘alternatively-activated’ macrophages induced by IL-4 or L-13, which 
are associated with type 2 immune responses, and a spectrum of 
macrophage phenotypes related to anti-inflammatory, angiogenic, and 
tissue-repair properties, induced by stimuli including TGFβ, immune 
complexes, glucocorticoids, and IL-10 [4-6]. Tissue-infiltrating 
monocytes are simultaneously exposed to differentiating and activating 
factors. Macrophages generated after monocyte stimulation with 
GM-CSF (granulocyte-macrophage colony-stimulating factor) are 
considered pro-inflammatory M1 macrophages, whereas monocytes 
differentiated and activated with M-CSF (Macrophage colony-
stimulating factor) acquire an anti-inflammatory phenotype and are 
denominated M2 macrophages. However, several authors consider 
that under homeostatic conditions, M-CSF differentiates monocytes 
into resident macrophages, which subsequently acquire the M1 or 
M2 phenotype in response to activation stimuli [7,8]. These two 

hypotheses might not be mutually exclusive: under steady-state 
conditions, monocytes infiltrate all tissues and differentiate into 
resident macrophages. Subsequently, in response to activation stimuli, 
these macrophages will acquire a specific differentiated phenotype. 
In addition, all immune responses involve recruitment of circulating 
blood monocytes, and these monocytes will be exposed simultaneously 
to differentiation and activation signals, resulting in their maturation 
into macrophages with a specific phenotype. 

Roles of macrophages in atherosclerosis 

Recent work suggests that different stages in the progression of 
atherosclerotic disease are associated with the presence of distinct 
macrophage subtypes [9,10]. 

The initial lesion: In both humans and experimental animals, 
hypercholesterolemia leads to the accumulation of plasma lipoproteins 
in the extracellular matrix of the vessel wall, where they undergo 
oxidation [11]. These deposits of oxidized lipoproteins, called fatty 
streaks, are very abundant in early atherosclerotic lesions, and are 
rich in lipid droplets, apoptotic cells and tissue debris. Endothelial 
cells neighbouring fatty streaks become dysfunctional, and it has 
been proposed that the prevalence of M2 macrophages in early 
atherosclerotic lesions is a reparative mechanism that limits disease 
progression in the initial stages. TGFβ released by M2 macrophages 
inhibits the recruitment of inflammatory cells, and this is associated 
with a significant atheroprotective effect [12]. M2 macrophages also 
have an immunosuppressive action through the release of IL-10, 
which inhibits the secretion of inflammatory cytokines such as IFNγ 
from other macrophages and from T-cells [13]. M2 macrophages are 
also atheroprotective through their capacity to reduce inflammation 
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by clearing apoptotic cells and tissue debris, a process known as 
efferocytosis [14]. 

Plaque growth: Defective efferocytosis and the accumulation 
of inflammatory signals, including modified LDLs, correlates with 
atherosclerosis progression, possibly due to increased secondary 
necrosis and recruitment of inflammatory cells. The accumulation 
of M1 macrophages in the damaged vessel wall has been shown to 
contribute to plaque expansion [9]. In general, M1-produced pro-
inflammatory markers are elevated in patients with unstable angina 
and myocardial infarction, with high levels predicting a poor outcome. 
Factors released by M1 macrophages include cytokines IL-6, IL-7 and 
IL-8, the soluble CD40 ligand (CD40L), C-reactive protein (CRP) 
and pentraxin-3 [15,16]. Atherosclerotic macrophages also secrete 
TNFα, which contributes to scavenger receptor downregulation 
[17]. In addition to activating other inflammatory cells, most of the 
inflammatory molecules produced by M1 macrophages contribute to 
the differentiation of newly-recruited monocytes to the M1 phenotype, 
increasing the inflammatory reaction through a feedback loop. M1 
macrophages also release vasoactive molecules such as nitric oxide, 
endothelins, and eicosanoids [18]. Reactive oxygen species generated 
by M1 macrophages induce lipoprotein oxidation, with significant 
cytotoxic consequences [19].

Pro-M1 Factors in Atherosclerosis 
The macrophage-differentiating stimulus: GM-CSF 

Human macrophages can be obtained in vitro by culturing CD14+ 
peripheral blood monocytes in the presence of GM-CSF. This cytokine 
is considered a differentiating and activating molecule and is needed 
for the survival of monocytes in vitro. Macrophages obtained by 
culture of monocytes in the presence of GM-CSF have adherent ‘fried 
egg’ morphology and are characterized by considerable expression of 
the inflammatory cytokines IL-1β, IL-18, IL-6, and TNFα and high 
expression of IL-23 and IL-12 [20]. 

Under basal conditions, endothelial cells, smooth muscle cells and 
macrophages express little GM-CSF in vivo, but expression is increased 
upon exposure to pro-atherosclerotic stimuli such as inflammatory 
cytokines or oxLDL [17,21]. However, GM-CSF+ macrophages (CD68+ 

CD14- according to Waldo et al.) seem to constitute only a minor 
fraction of atherosclerotic macrophages, and indeed GM-CSF is not 
always detected in human atherosclerotic lesions [22]. 

Th1 cytokines: IFNγ 
IFNγ is the most important Th1 cytokine inducing the acquisition 

of an M1 macrophage phenotype. These macrophages are effectors in 
type I immune responses, pathogen killing and anti-tumor defense 
[6,23]. 

IFNγ mRNA is highly expressed in atherosclerotic lesions and 
correlates with plaque progression [24]. IFNγ-stimulated macrophages 
have a pro-atherogenic phenotype characterized by production of 
the inflammatory cytokines IL-12, IL23 and IL-1β. Although IFNγ-
activated human and murine atherosclerotic macrophages show 
reduced expression of CD36 and SR-A receptors, they contribute to 
abnormal cholesterol homeostasis by reducing cholesterol efflux, 
accumulating cholesterol esters and forming foam cells as a result 
ofincreased ACAT-1 activity and reduced expression of 27-hydroxylase 
and the ABCA1 cholesterol transporter [25]. 

Inflammatory molecules: TNFα, CD40L and C-reactive 
protein (CRP)

In addition to their priary role in inflammation, most inflammatory 

cytokines produced by M1 macrophages also help maintain the pro-
inflammatory phenotype (of newly recruited monocytes). TNFα 
released by inflammatory atherosclerotic macrophages contribute 
to atherosclerotic inflammation [26], and TNFα production also 
modulates macrophage phenotype: macrophages stimulated with 
TNFα display an M1 phenotype by downregulating scavenger receptor 
expression and foam cell formation. Moreover, TNFα has been shown 
to induce stronger activation of NF-κB in the presence of IFNγ, and this 
NF-kB activation is accomplished via increased production of reactive 
oxygen species and induction of inducible nitric oxide synthase (iNOS) 
to produce nitric oxide (NO) [27]. 

CD40 ligand (CD40L) is a 39-kd transmembrane member 
of the TNF family with a well-established role in atherosclerosis. 
High levels of CD40L have been detected in patients suffering from 
hypercholesterolemia, unstable angina, or acute myocardial infarction 
[28]. Binding of CD40L to CD40 promotes pro-inflammatory cytokine 
production, reduces NO bioavailability, and induces overexpression 
of adhesion molecules, in turn promoting leukocyte recruitment and 
atheroma formation [29]. In a recent study, Verreck et al. showed that 
treatment of GM-CSF-derived macrophages with CD40L induced the 
expression of IL-18, IL-6 and TNFα, suggesting a role for CD40L in 
the maintenance of the pro-inflammatory macrophage phenotype in 
atherosclerosis [30]. 

C-reactive protein (CRP) is considered a reliable predictor of 
adverse cardiovascular events [31]. Moreover, administration of human 
CRP to rats induces endothelial dysfunction and activation of NADPH 
oxidase, NF-κB, matrix metalloproteinase-9, tissue factor activity, and 
release of the pro-inflammatory cytokines IL-1 and IL-6CRP (32). CRP 
has also recently been shown to promote the differentiation of human 
monocytes into M1 macrophages that release large amounts of the pro-
inflammatory cytokines IL-12, IL-1β, IL-6, TNFα and MCP-1 while 
upregulating expression of CCR2 [33]. 

Pro-M2 Factors in Atherosclerosis 
The macrophage-differentiating stimulus: M-CSF 

Stimulation of human CD14+ peripheral blood monocytes with 
M-CSF promotes monocyte survival and their differentiation into 
M2-like phagocytic macrophages that produce high levels of IL-10 
[20]. M-CSF-derived macrophages are adherent, with a stretched, 
spindle-like morphology, and are better able than GM-CSF-derived 
cells to form foam cells. A phenotype favoring foam cell formation is 
supported by genetic profiling of M-CSF-differentiated primary mouse 
macrophages [8]. M-CSF upregulates enzymes involved in cholesterol 
biosynthesis and downregulates ATP-binding cassette transporter G1 
(ABCG1), which is involved in cholesterol efflux. Moreover, in human 
monocyte-derived macrophages, oxLDL accumulation is higher in 
M-CSF-differentiated macrophages than in GM-CSF-differentiated 
cells, and correlates with the upregulation of CD36 and SR-A, 
membrane proteins involved in the uptake of modified lipids [8,22]. 

In mouse and human lesions, M-CSF is detected both in healthy 
arteries and atherosclerotic lesions, and in the latter is associated 
with macrophage and foam-cell content and correlates with plaque 
progression [8,21,22,34]. These data are consistent with a scenario 
in which M-CSF and GM-CSF both contribute to macrophage 
heterogeneity observed in plaques. Since M-CSF is constitutively 
expressed, macrophages infiltrating early lesions are likely to 
differentiate toward an M2-like phenotype. As the plaque progresses, 
oxLDL and other inflammatory stimuli could potentially increase the 
production of both M-CSF and GM-CSF, making the balance between 
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the levels of these differentiation factors very important. Since high 
GM-CSF expression seems to be Specifically associated with advanced 
lesions, a high GM-CSF: M-CSF ratio may favour a phenotypic 
switch toward pro-inflammatory M1-like macrophages upon plaque 
progression, as observed by Khallou-Lashet et al. in moue lesions [9]. 

Th2 cytokines: IL-4 

Macrophages primed by Th2-derived cytokines are referred to as 
alternative-activated macrophages or M2, and are further subdivided 
according to the polarizing cytokine and function. Macrophages 
primed by IL-4 or IL-13 are referred to as M2a and are characterized 
by high expression of Arginase-1 (Arg-1), chitinase 3-like 3 lectin 
(also known as Ym1), the transcription factor found in inflammatory 
zone 1 (FIZZ1) and mannose receptor (MMR). M2a macrophages are 
mainly involved in homeostasis, tissue repair, allergy and resistance to 
parasites [4,5]. 

IL-4 has been shown in mice and humans to increase in vitro 
and in vivo macrophage 15-lipoxygenase, an M2 marker linked to 
increased foam-cell formation [35], and CD36 and SR-A, thereby 
allowing macrophages to take up more oxLDL and acLDL [36]. 
However, despite the a priori anti-inflammatory role of IL-4-primed 
macrophages, their role in atherosclerosis in vivo is still unclear. 
Atherosclerotic lesions consistently contain large amounts of IL-4, 
probably produced by neutrophils [37] or NKT cells [38], and elevated 
IL-4 levels are associated with atherosclerosis progression. A study in 
human atherosclerotic plaques, using MMR as a marker of IL-4-primed 
macrophages, showed that CD68+MMR+ cells in IL-4-rich areas of the 
lesion showed reduced lipid accumulation and were predominantly 
present in stable cell-rich areas of the plaque; in contrast, CD68+MMR- 
cells were more lipid-filled and were found in areas surrounding the 
lipid-rich core. Moreover, the lipid phenotype of CD68+MMR+ plaque 
macrophages was confirmed by in vitro experiments showing reduced 
uptake of native and oxidized lipoproteins by human monocyte-derived 
macrophages primed with IL-4. Remarkably, these CD68+MMR+ cells 
also exhibited decreased expression of ABCA1 and apolipoprotein E 
(ApoE), thereby implying lower cholesterol efflux capacities [39]. 

Finally, IL-4 has been shown to upregulate the expression of 
metalloproteinases involved in matrix degradation and plaque release 
[6,40,41]. Therefore, despite the putative role of IL-4 in resolving M1-
mediated inflammatory responses, IL-4-activated macrophages may 
also have a pro-atherogenic role. 

Anti-inflammatory molecules: IL-10 and TGFβ 

IL-10-primed macrophages are often called ‘regulatory’ or M2c, and 
act as safeguards that control and dampen immune responses through 
high production of IL-10 and TGFβ [42]. In mouse macrophages, IL-
10 increases foam-cell formation by upregulating CD36 and SR-A. 
These macrophages are less prone to apoptosis, and show increased 
cholesterol efflux mediated via PPARγ-induced ABCA1 expression 
[43]. 

Frostegard et al. did not detect IL-10 in human lesions [21], while 
others were able to show IL-10 mRNA expression in a number of 
human atherosclerotic plaques [44]. Nonetheless most authorities 
agree that the atheroprotective role of IL-10-primed macrophages is 
mediated mainly by their anti-inflammatory properties [45]. 

Macrophages activated with TGFβ are also included in the M2c class 
because they show the hallmark downregulation of pro-inflammatory 
cytokines, increased debris scavenging, and a pro-healing functional 
program [46]. Blocking antibodies against TGFβ or treatment with 

soluble TGFβ receptor II accelerates atherosclerosis, associated with a 
significant loss of collagen content [47]. 

Role of Apolipoprotein E and LDLs in Macrophage 
Polarization

Apolipoprotein E (ApoE) is a major protein component of very-
low-density lipoproteins (VLDL) and high-density lipoproteins 
(HDL) and the ApoE knockout (ApoE-/-) mouse is the most widely 
usedatherosclerosis model. Elimination of ApoE in this model causes 
severe hypercholesterolemia leading to spontaneous development of 
atherosclerosis [48,49]. 

ApoE was recently shown to induce characteristics typical of 
alternative activation in mouse macrophages, reducing the steady-
state production of M1 cytokines IL-12 and macrophage inflammatory 
protein-1α while increasing the production of the M2 cytokines IL-1RA 
and GM-CSF in a concentration-dependent manner. These findings 
indicate that ApoE shifts the balance from a pro-inflammatory to an 
anti-inflammatory cytokine profile [50]. 

Macrophages stimulated with immunocomplexes are called 
M2b. Oxidized LDLs (OxLDLs) are major autoantigens that 
form immunocomplexes with anti-oxLDL antibodies present in 
atherosclerotic lesions. Macrophages can ingest these complexes 
via Fc-γ receptors, leading to their activation. Kadl and colleagues 
recently proposed the existence of a third polarized macrophage sub-
type, specifically associated with the oxLDL-rich microenvironment 
of atherosclerosis. This sub-type, termed Mox, develops in response 
to atherogenic phospholipids via expression of the redox-regulated 
transcription factor Nrf2, and has a lower phagocytotic and chemotactic 
capacity than the conventional M1 and M2 macrophages [51]. 

Concluding Remarks 
Macrophages are central to the initiation and progression of 

atherosclerosis. Different macrophage sub-types have recently been 
shown to be involved in different stages of the disease. The phenotype 
and activity of each macrophage subtype depend on the profile of 
factors present in the local microenviroment. Understanding how 
each cytokine influences macrophage phenotype is crucial for the 
development of anti-atherosclerosis therapies, and several current 
studies are characterizing these processes. Although characterization 
of the effects of individual cytokines is crucial, it must be remembered 
that in a living organism cells are exposed to multiple cytokines 
simultaneously. Future studies of the role of macrophages in 
atherosclerosis must therefore examine the effect of combined stimuli 
on the phenotype and function of these cells. 
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