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Abstract

The expression profiling of diabetes vs. healthy is a method of identifying genes potentially involved in the pathogenic 
process. Microarray analysis enable one to determine the relative level of expression of practically all genes in a genome, 
allowing the prediction of cellular plans for protein synthesis to be established. We therefore took the approach of using 
microarray analysis to provide a list of genes that are differentially expressed between diabetes vs. healthy. Statistical 
methodologies are employed for interpretation of microarray results. The present paper discusses the introduction to 
microarray analysis and statistical methods along with the application of our present study on differentially expressed 
genes of diabetes vs healthy. 

Introduction

Completion of the human genome project, and the 
availability of complete genomes for model organisms, 
provided unprecedented prospects to the scientific community 
to carry out investigations regarding the greater mysteries 
of life at the molecular level, i.e. “ from the bottom”. The 
availability of several genomic blueprints has allowed new 
approaches that are based on comprehensive molecular 
analyses (and which enhance the understanding of biological 
systems) to be devised especially for biomedical applications. 
These new approaches offer the potential to describe specific 
types of genetic changes as well as patterns of altered gene 
expression and functions that define, for instance, actual 
medical problems in the context of, but not entirely based 
on, symptoms. It is anticipated that these new methods will 
lead to identification of previously un- known features of 
individual disease characteristics and profile progression 
and response to treatment on the molecular basis. One of 
the most powerful tools that has been developed as a vehicle 
for carrying out such comprehensive analyses is the DNA 
microarray, or the “Gene chip”, which consists of a flat 
solid support with multiple probes that can be used to yield 
analytical signals (Suzuki et al, 2007).

Since its inception, DNA microarray technology has 
gained widespread popularity for several reasons, including 

the fact that it allows a global snapshot of an organism’s 
gene expression at a given point time to be obtained. This 
is important because it is widely believed that thousands of 
genes and their products in a given living organism function 
in concert in a complicated and well-coordinated way to 
sup- port its activities. Thus, a technology that allows such 
a global picture to be obtained enhances the understanding 
of the molecular- level biology of an organism and is highly 
desirable from that perspective. Traditional molecular biology 
methods of research have generally worked on a single 
experiment basis, determining the functions of a specific 
gene in given physiological, chemical and/or biochemical 
conditions, which means that the throughput is very limited 
and a comprehensive picture is hard to obtain.

Biological Background

Perhaps one of the most fundamental biological precepts 
is the crucial role played by proteins as functional molecules 
of living cells. They are known to be responsible for energy 
production, biosynthesis of macromolecular components, 
maintenance of the structural architecture of the cell and 
response to external stimuli. Specialization of cellular 
functions occurs when certain specific proteins are produced 
to direct the essential activities of a given cell type. These 
proteins may be synthesized when the need arises for non- 
routine functions such as response to environmental results. 
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On the other hand, “housekeeping proteins’ are required for 
basic processes such as replication, transcription, translation, 
protein folding and primary metabolism. Recently Xi et al 
(2007) used a high throughput method called DNase- chip to 
identify 3,904 DNaseI HS sites from six cell types across 1% 
of the human genome. A significant number (22%) of DNaseI 
HS sites from each cell type are ubiquitously present among 
all cell types studied

Although it is not clear at what levels housekeeping proteins 
are produced, there is a general agreement that specialized 
proteins are produced in fluctuating concentrations, and 
are important for influencing many of the unique cellular 
dynamics. Thus, understanding the well–orchestrated 
molecular networks that control the synthesis, stability and 
degradation of these proteins is important in appreciating 
most vital biological functions of cells (Sato and Brivinalov, 
2006). Understanding these regulatory networks provides 
insight into possible molecular interventions in cases of 
cellular malfunction. This is the driving force behind the 
ad- vent of studies culminating in the recent high throughput 
technologies in general molecular biology.

Consequently, two options are available for investigating 
molecular dynamics of the cell: (i) analyzing the complete 
set of proteins in the cell (proteomics) or (ii) studying the 
variation in transcription of genetic information that leads 
to the production of these proteins (transcriptomics). While 
proteomics provides a snapshot of the status of the current 
molecular machinery of a cell, transcriptomics allows one 
to identify the cell’s strategy for protein synthesis in the 
conditions under which it is being investigated. The goals of 
both transcriptomics and proteomics are most often met using 
high – throughput technologies such as DNA microarrays and 
mass spectrometry. Although protein array technology has 
also been developed for proteomics, its use is currently not as 
widespread as its DNA counterpart. DNA microarrays enable 
one to determine the relative level of expression of practically 
all genes in a genome, allowing the prediction of cellular 
plans for protein synthesis to be established. The greater 
goal of genomics is to determine the functional pathways 
influenced by the interactions of all the expressed genes in 
a genome under a specific set of conditions. Unfortunately, 
this goal has not been met in the past, perhaps due to the 
lack of technological ability to survey a large number of gene 
transcripts or proteins simultaneously, and the scarcity of 
genes whose DNA sequences had been determined (Romero 
et al, 2006).

The genome is a blueprint for the biology of cells and its 
transcription is a regulatory step leading to cellular functional 
diversity. A genome is defined as the entire repertoire of genes 
in an organism’s chromosomes, while genes are described as 
sequences of DNA nucleotides capable of encoding biological 
information. Some genes encode proteins, others functional 
RNAs such as ribosomal RNAs and transfer RNAs, required 
for the translation process itself. The fluctuations in the 
amount of expressed genetic information lead to a cascade 
of events influencing the cell’s function. If such functions are 
routine, then it would be expected that the amount of genetic 
information expressed would stay relatively stable. In 
principle, for any given expressed gene in a cell, it is possible 
that a protein, whose function is required by the cell, will be 
synthesized. In practice however, the quantitative correlation 
between gene expression and protein synthesis is quite poor 
due to differences in mRNA stabilities and transnational 
efficiencies.

However, a comprehensive evaluation of whole – genome 
expression is expected to be very informative with respect 
to cell dynamics. Consequently, by evaluating fluctuations in 
the levels of thousands of expressed genes, greater confidence 
can be placed on inferences concerning the functional needs 
of the cell.

The molecular transmission of information in eukaryotes 
follows a pathway between DNA, RNA and proteins. The 
biological information provided in the DNA nucleotide 
sequence of a gene is transcribed into mRNA, which is 
ultimately translated into protein. The mRNA primary 
transcript is complementary of the DNA sequence and 
must be correctly spliced to remove non–coding intronic 
sequences in order to yield the mature mRNA, which 
consists of in- formation – coding (exonic) segments of a 
gene. In addition to the coding region, the mature transcript 
contains a 5’ untranslated region. (UTR), a 1’UTR and a 
polyadenylation signal which specifies the addition of a 
polyadenosine tail to the 3’ end. Translation into proteins is 
performed on ribosomes and starts at an initiator methionine 
codon (ATG). An initiator transfer RNA (tRNA) forms a 
complex that results in the beginning of the nascent peptide. 
Sequentially, complexes are formed between codons and the 
appropriately charged tRNA and amino acids are added (with 
the ribosome moving from codon to codon along the mRNA) 
until a stop codon is encountered. The order of amino acids 
added during translation is determined by the order of codons 
on the mRNA between a start codon and a stop codon, known 
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as an open reading frame (ORF). A caricature of this process 
is shown in Figure 1.1.

With respect to cellular activity and function therefore, 
transcription is one of the most fundamental biomolecular 
processes. This process is controlled of their own genes and 
other genes, and thereby stabilizes cellular activity. Thus, 
if transcription is inhibited, entire molecular pathways and 
cellular functions could be disrupted. This underscores the 
need to evaluate this process as a whole, in order to integrate 
inherent cellular dynamics and complexities. In principle, 
it is possible to monitor transcription by characterizing 
fluctuations in the relative concentration of mRNA. The link 
between variations in mRNA abundance and cellular activity 
is a matter of biological fact, notwithstanding the poor 
quantitative correlation. When a cell is faced with atypical 
conditions such as starvation, stress, or infection by disease, it 
responds by activating a transcriptional program that ensures 
maintenance of cellular homeostasis. Thus, if a snapshot 
of the status of transcription in a cell is taken subsequent 
to a perturbation, it is possible to determine the candidate 
proteins required to counter the imbalance by analyzing 
the abundance of mRNAs. Investigations were largely 
based on single gene studies, and relied heavily on the prior 

identification of the genes that played known roles in specific 
cellular functions. This, unfortunately, underestimated 
the complexity of the transcriptional programs involved. 
Undoubtedly, viewing transcription as a complex biological 
motor that drives the most fundamental cellular processes 
like growth, development, response to abuse and even death, 
became a necessity in the under- standing of these processes.

Single – Channel Microarrays

Single – channel microarrays represent perhaps some of 
the best known commercial platforms for DNA microarray 
technology, epitomized by the Affymetrix Gene Chips 
(Downey et al, 2006).These are made by synthesizing, in 
situ, thousands of short nucleotide sequences based on ESTs, 
cDNAs or genomic DNA on silicon wagers. For purposes 
of expression monitoring, fluorescent labeled cDNA are 
hybridized to the array to allow probe-target interactions 
through base-pairing.

Although these arrays have a number of positive features, 
there are also several drawbacks. Perhaps chief among 
these is cost, since the technology is currently proprietary 
and therefore not subject to market influences. Another 
important limitation is that the availability of the arrarys is 
restricted to a small number of specific organisms that have 
been extensively sequenced and that are of general interest. 
Layout designs are standardized, although custom arrays 
can be produced at a cost. The requirement of knowledge 
of exact DNA sequences for the probes has also put these 
arrays at a relative disadvantage in terms of the discovery 
of novel genes. In addition, due to the short lengths of the 
probes, it is anticipated that, when attached to a surface, the 
bases nearest to the surface will be strictly inaccessible due to 
duplex formation with complementary molecules in mixture.

Although single–channel arrays are widely used; the focus 
of our present study will be on two-channel arrays, which 
appear to have established themselves to greater extent in 
research/academic laboratories because of their lower cost 
and greater flexibility.

Two – Channel Microarrays

The basis of two – channel microarray platforms is the 
comparison of mRNA abundance in similar cell samples 
fewer than two distinct physiological conditions on a single 
chip (Sjogren et al, 2007). The approach for accomplishing 
this can be described in four individual steps. First, mRNA 
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from samples under two conditions, where one condition 
is taken to be the reference (I e.g. I normal physiological 
state), is independently extracted. The amount of mRNA in 
the two samples is usually normalized through absorbance 
measurements of the total RNA. In the second step, mRNA 
from the two extracts is separately copied into cDNA in vitro, 
using an enzymatic reaction known as reverse trascription. 
During this synthesis, a deoxynucleotide triphosphate 
labeled with one of two color fluorphores (red or green) 
or an aminoally 1 deoxynucleotide triphosphate, which is 
subsequently chemically coupled to a fluorophore, is added 
into the respective reaction mixtures and is incorporated into 
the synthesized cDNA. Third, equal aliquots of the two-labeled 
cDNAs are co-hybridized onto a single array containing 
single – stranded DNA probes. Finally, fluorescence 
signals emitted by the targets are collected when the array 
is scanned with lasers set at wavelengths corresponding 
to the excitation frequencies of the two fluorophores. For 
every hybridization experiment, the emitted fluorescence 
is captured and stored as a 16-bit tagged image file format 
(tiff). The relative abundance of mRNAs in the two samples 
is calculated as the ratio of the fluorescence intensities of the 
two dye-labeled cDNAs that hybridized with each probe. The 
general experimental setup is represented in Figure 1.2. The 
theory is that each probe will recognize and bind all of its 
complementary partners in the sample through base pairing 
since the probes are in relative excess. The non – hybridized 
transcripts are subsequently washed off so that the emitted 
fluorescence is exclusively due to hybridized targets. The 
principle of co-hybridization of transcripts and determination 
of relative rather than absolute amounts of transcripts is a 
consequence of the practical aspects of the experimental 
setup for the spotted microarray platform. Relating the 
measured fluorescence intensity of hybridized transcripts to 
absolute gene expression levels is impractical because; (a) 
the concentration and length of probes among spots on a slide 
is variable, (b) probe attachment is susceptible to aberrations 
that lead to non-uniform spot morphologies, and (c) reference 
standards containing known amounts of transcription 
products are not generally available. Regarding (a), variation 
in the amount of probe can occur when the probes are obtained 
from a library of expressed genes that vary in length. While 
(b) is not a concern with in situ synthesized microarrays, it
is a fundamental problem in spot- ted microarrays. Spotting
of probes is performed robotically using pins (print heads)
that pick up DNA from 96 – or 384 – well microtitre plates

by capillary action. These deposit probe aliquots sequentially 
onto many glass microarray slides. Due either to non – 
uniform surface properties of the glass slides, or temporal 
wear of the print heads, the shapes of the spots may vary 
across a slide and among slides. Thus, when the fluorescence 
intensity is evaluated for each spot, it is common for such 
morphological anomalies to result in high signal variability. 
Finally, in view of (c), the lack of reference standards leads to 
the situation where one of the physiological conditions from 
which the two cell samples are derived must be considered as 
a reference state or considered.

This allows transcriptional readjustments in the cells under 
perturbed chemical or physical environments to be evaluated 
based on this reference. Thus, analysis of two – channel 
microarrays involves computing the relative fluorescence 
intensities of the two dyes for each probe, where the reference 
sample acts as an internal standard. Ratios are believed to 
alleviate potential experimental variability resulting from 
unequal concentrations of probe, cross- hybridization and 
micro–spotting anomalies. Although this may mitigate some 
of the variability, other sources of these errors is important in 
appreciating the context in which two–color microarrays are 
measured and analyzed.

One of the most widely used methods for ratio calculation 
is the ratio of medians. This is a method where differential 
expression is measured as a ratio of the median of pixel 
intensities within a spot mask for both dyes. The median is 
intended to represent the center for the distribution of pixel 
intensities comprised in the spot mask. Perhaps one of the 
major advantages of this approach is that the measured 
ratios are robust to influence from a few pixels with extreme 
values at either end of the distribution. Unfortunately, when 
spots are characterized by substantial regions (>50%) of low 
intensity pixels, as in the case of “donuts”, it is anticipated 
that the low intensity pixels will dominate the spot mask and 
result in ratios with a high uncertainty.

Another common measure of differential expression 
involves evaluating the ratio of the mean of pixel intensities 
within the spot mask. Calculation of mean values is straight 
forward and less affected by extended regions of low intensity 
fluorescence, but they are more susceptible to the influence 
of extreme values at either end of a population, i.e., outliers 
in pixel population. For this reason, the ratio of means is 
generally less robust. A less frequently used approach to 
measuring the relative fluorescence is to calculate pixel–
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by–pixel ratios of intensities across the spot and then report 
the differential expression as the arithmetic mean or median 
of the ratios. This is referred to as the “mean of ratios” or 
“median of ratios”, respectively (Bakewell DJ, and Wit E, 
2005). A major drawback of this approach, especially when 
using means, is the high sensi- tivity of the summary statistic 
to pixels.

Experimental Design Issues

One of the unfortunate consequences of the technical 
and conceptual simplicity of microarray technology is its 

capacity to yield data sets that are biased by inadequate 
design considerations. In the absence of well – established 
experimental designs for microarrays, poorly designed 
experiments continue to yield multiply confounded data 
with which one is unable to answer the question for which 
the experiment was conducted. The general objective of de- 
signing an experiment is to curtail effects of confounding 
factors by generating data that span rich and diverse sample 
spaces, have minimum effects of unwanted variation and 
provide the potential for maximum efficiency for probing 
the hypotheses under investigation. Yet, in microarrays, 
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there is often the false hope that due to the volume of data 
generated per experiment, confounding factors and unwanted 
variation will be somewhat mitigated. The focus of interest 
in microarray studies is typically genes that are differentially 
expressed in different subjects, different tissues, cells 
exposed to varying physical/biochemical conditions, or 
those undergoing growth, development, and degeneration. 
Some of the common reasons for evaluating these variables 
are to discover the roles of genes in an organism, to group 
genes according to common functions, to understand the 
relationships among genes in a biological system (systems 
biology), to classify biological specimens (e.g tumor cells) 
on the basis of gene expression, and to identify important 
biomarkers in disease progression.

Thus, analysis of these experiments involves identification 
of genes that display uncharacteristic tendencies of increased 
or decreased expression and achieving this goal must involve 
careful experimental design to avoid spurious observations 
confounded by unrelated experimental variables at 
multiple levels. Microarray experiments can be regarded 
multilayered in the sense that they involve several nested 
levels at which variability may be introduced. In general 
microarray experiments must be designed into three layers: 
(1) the selection of experimental units, (2) the de- sign of
mRNA extraction, labeling and hybridization, and (3) the
arrangement of probes on the glass slides. Whereas the first
layer controls the span of the biological design space, the
second and third layers account for the analytical (technical)
variability at the lower levels of the experimental process and
will be the focus of this section.

Higher Level Data Analysis

At the primary level of data analysis, which might be 
considered as data preprocessing from a chemometrics 
perspective, the steps are largely the same from one 
application to another: griddling and segmentation, gagging, 
image processing, background subtraction, ratio calculation 
and normalization. Although the details of these steps may 
differ, in the end the usual result is a vector of ratios and 
their associated gene identifiers for a series of samples, 
forming a two – way data matrix for further analysis. At this 
stage, a variety of methods can be used to coax the desired 
information from the data, depending on the nature of the 
experiment. Typical goals include: (1) the identification of 
genes exhibiting deferential expression (up – or down – 
regulation) relative to some reference state, (2) the clustering 

or classification of genes based on their expression across 
multiple samples, (4) the identification of genes that may be 
used as biological markers (e.g for a mutation, a disease, or 
resistance to some medication), and (5) elucidation of gene 
function and mechanisms of interaction, i.e. gene networks. 
In these studies, the term “expression profile” is generally 
used to describe the normalized ratio (test/ reference) or log- 
ratio of signals across all genes for a sample represented on a 
particular microarray. From a chemometrics point of view, it 
could be considered a kind of “genetic spectrum” except that 
there is no naturally contiguous ordering of channels.

Changes, not absolute ratios, are important in time course 
experiments. In other words, a change of 0.5 to 1 is equivalent 
to a change of 1 to 2 None the less, a consistent point of 
reference should be chosen. It is also important to note that, 
due to the proportional error structure, it becomes more 
useful to determine the normalization factor, a, (Following 
quation) through a regression of the ratios on the log scale 
using the model:

log2 yi = log2 +log2xi + I

Functional Classification of Differentially Expressed 
Genes

To determine biological significance of differentially 
expressed genes, functional classification was performed 
using Gene Ontology. Gene Ontology reports along with 
z-score are provided in supplementary material for your
reference. Numbers in parentheses indicate number of up-
regulated/down-regulated genes and total number of genes
(in uploaded data), present in that particular ontology
respectively. Z-scores give statistical significance, indicating
relative representation up- regulated/down-regulated
genes in each function. To determine pathways associated
with differentially expressed genes, pathway analysis was
performed. Pathway reports are provided in supplementary
material. Numbers in parentheses indicate number of up-
regulated / down- regulated genes and total number of
genes (in uploaded data), present in that particular pathway
respectively.

1. Obese Vs Tendency towards Obesity (O Vs
HO)

1.1 Molecular function: Genes involved in transforming 
growth factor beta binding, Sodium : amino acid symporter 
activity, adenosylhomocysteinase activity, transferase activity, 
transferring acyl groups, caspase activator activity, NAD(P)H 
oxidase activity, steroid 21- monooxygenase activity, malate 
dehydrogenase (oxaloacetate-decarboxylating) (NADP+) 
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activity, glutamate de- carboxylase activity upregulated in 
O Vs HO. Genes involved in creatine:sodium symporter 
activity, glycolipid transporter activity, glycolipid binding, 
3-hydroxyisobutyrate dehydrogenase activity, leukemia
inhibitory factor receptor activity, superoxide-generating
NADPH oxidase activity, chemokine receptor activity,
interleukin-22 receptor activity are downregulated in O Vs
HO.

Biological process: Genes involved in establishment of 
cellular localization, cuticle biosynthetic process, hydro- 
gen peroxide, biosynthetic process, vesicle docking are 
upregulated in O Vs HO. Genes involved in synaptic vesicle 
membrane organization and biogenesis, response to stimulus, 
anatomical structure development are down regulated in O 
Vs HO.

Cellular component: Genes localized in CAAX – 
protein geranylgeranyltransferase complex are upregulated 

in O Vs HO. Genes localized in Golgi transport complex, 
vesicle, oncostatin-M receptor complex, perikaryon are 
downregulated in O Vs HO.

Diabetes with History Vs Diabetes without 
History

D&PH Vs D&NPH1

Molecular function: Genes involved in MHC class 
II receptor activity, gamma-aminobutyric acid:hydrogen 
symporter activity, chemokine receptor activity, interleukin-4 
receptor activity, interleukin-7 receptor ac- tivity, arachidonate 
5-lipoxygenase activity, complement receptor activity are
upregulated in D&PH Vs D&NPH1. Genes involved in
ammonia ligase activity, transaldolase activity, 4-alpha-
glucanotransferase activity, choline:sodium symporter
activity, interleukin-8 receptor activity are downregulated in
D&PH Vs D&NPH1.
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Biological process: Genes involved in cell activation, 
macromolecule biosynthetic process, hydrogen peroxide 
biosynthetic process, immune response, regulation of 
glycolysis are upregulated in D&PH Vs D&NPH1. Genes 
involved in blastocystal growth, aromatic compound 
biosynthetic process, nitric oxide biosynthetic process, 
regulation of glycolysis are downregulated in D&PH Vs 
D&NPH1.

Cellular component: Genes localized in ribonucleoside- 
diphosphate reductase complex, interleukin-18 receptor 
complex, interleukin-1 receptor complex, mitochondrion 
interleukin-5 receptor complex are upregulated in 

D&PH Vs D&NPH1. Genes localized in proteasome 
activator complex, isoamylase complex, CAAX-protein 
geranylgeranyltransferase complex, protein kinase CK2 
complex, oxoglutarate dehydrogenase complex, MHC class 
I peptide loading complex are downregulated in D&PH Vs 
D&NPH1.

D&PH Vs D&NPH2

Molecular function: Genes involved in structural 
constituent of ribosome, MHC class II receptor activity, 
ferroxidase activity, NAD(P)H oxidase activity are 
upregulated in D&PH Vs D&NPH2. Genes involved in 4- 
alpha-glucanotransferase activity, phosphomannomutase 
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Table 3.1: Number of up regulated and down regulated genes in each treatment category.
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activity, receptor signaling protein tyrosine kinase activity 
are downregulated in D&PH Vs D&NPH2.

Biological process: Genes involved in intracellular 
sequestering of iron ion, ribosome biogenesis and assembly, 
hydrogen peroxide biosynthetic process are upregulated 
in D&PH Vs D&NPH2. Genes involved in hemostasis, 
developmental growth, lipid glycosylation, regulation of 
glycolysis are downregulated in D&PH Vs D&NPH2.

Cellular component: Genes localized in ribosome, 
ferritin complex are upregulated in D&PH Vs D&NPH2. 
Genes localized in CAAX-protein geranylgeranyltransferase 
complex, isoamylase complex, apolipoprotein B mRNA 
editing enzyme complex, lipopolysaccharide receptor 
complex, proteasome activator complex are downregulated 
in D&PH Vs D&NPH2.

Pathway Analysis

Diabetes Vs Normal (D&PH Vs H)

Genes involved in Inositol phosphate metabolism, Starch 
and sucrose metabolism, Nitrogen metabolism, Oxidative 
phosphorylation, Androgen and estrogen metabolism, 
Glycan biosynthesis and metabolism pathways, Metabolism 
of cofactors and vitamins pathways, MAPK signaling 
pathway, ECM-receptor interaction, Neuroactive ligand- 
receptor interaction, Regulation of actin cytoskeleton, Cell 
communication pathways, Nervous system path- ways, 
Neurodegenerative disorders pathways are upregulated in 
D&PH Vs H.

Genes involved in Glycolysis / Gluconeogenesis, 
Propanoate metabolism, Carbon fixation, Biosynthesis of 
steroids, Fatty acid metabolism, Histidine metabo- lism, 
Phenylalanine metabolism, Tyrosine metabolism, Urea cycle 
and metabolism of amino groups, Cell cycle, Insulin signaling 
pathway, PPAR signaling pathway, Anti- gen processing and 
presentation are downregulated in D&PH Vs H.

Genes involved in Cell adhesion molecules (CAMs), 
Cytokine-cytokine receptor interaction, Insulin signaling 
pathway, Immune sytem pathways are downregulated in O 
Vs H.

Diabetes Vs Obese (D&PH Vs O)

Genes involved in Inositol phosphate metabolism, 
Oxidative phosphorylation, Amino acid metabolism 
pathways, Ubiquinone biosynthesis, Signal transduction 
pathways, Signaling molecules and interaction pathways, 
Nervous system pathways are upregulated in D&PH Vs O.

Diabetes with History Vs Diabetes without 
History

D&PH Vs D&NPH1

Genes involved in signal transduction, Regulation of 
actin cytoskeleton, Antigen processing and presentation, 
Complement and coagulation cascades, Axon guidance, 
Neurodegenerative disorders pathways are upregulated 
in D&PH Vs D&NPH1. Genes involved in carbohydrate 
pathways are downregulated in D&PH Vs D&NPH1.

D&PH Vs D&NPH2

Genes involved in Oxidative phosphorylation, Metabolism 
of cofactors and vitamins pathways, Immune system path- 
ways, Nervous system pathways, Metabolic disorders path- 
ways are upregulated in D&PH Vs D&NPH2.

Genes involved in Lipid metabolism pathways, Amino 
acid metabolism pathways, Glycan biosynthesis and 
metabolism pathways, Ubiquitin mediated proteolysis, 
Signal transduc- tion pathways, Signaling molecules and 
interaction pathways, Insulin signaling pathway, PPAR 
signaling pathway are downregulated n D&PH Vs D&NPH2.
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