Journal of

Oceanography and Marine Research

Steudel, Oceanography 2014, 2:2
DOI: 10.4172/2332-2632.1000122

Perspective Open Access

Microalgae in Ecology: Ecosystem Functioning Experiments

Bastian Steudel’2"

1Experimental Phycology and Culture Collection of Algae, Georg-August-University Géttingen, Albrecht-von-Haller Institute, Nikolausbergerweg 18, 37073 Géttingen,

Germany

2Bjodiversity, Macroecology and Conservation Ecology, Georg-August-University Géttingen, Biisgenweg 1, 37077 Géttingen, Germany

Corresponding author: Bastian Steudel, Georg-August-University Géttingen, Albrecht-von-Haller Institute, Experimental Phycology and Culture Collection of Algae,
Nikolausbergerweg 18, 37073 Gottingen, Germany, Tel: 49-0551-39-137; E mail: bastiansteudel@aol.com

Rec date: Feb 11, 2014; Acc date: Jun 17, 2014; Pub date: Jun23, 2014

Copyright: © 2014 Steudel B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

Ecosystem functioning is one of the most striking topics in
ecological research. All human beings depend on the functioning of
ecosystems and the services provided by ecosystems [1]. Ecosystem
services provide food from e.g. agriculture and fish as well as clean
water and air. Thus, the functioning of ecosystems is a crucial topic of
experimental studies in ecology. The first known ecological
experiment was on increases of biomass in mixed cultures of grasses
compared to monocultures of the species [2,3]. Although, this
experiment gave an empirical evidence of positive effects of species
richness on biomass production [2] similar experiments were repeated
in the 20t century and finally a series of meta-analyses was necessary
to reach a consensus about positive biodiversity-ecosystem
functioning effects, ie., biodiversity effects [4-7]. Most of these
manipulation experiments observing biodiversity effects on ecosystem
functioning were conducted in grassland ecosystems or with grassland
species [6,7]. This surprises not because terrestrial ecosystems are of
high commercial interest [8,9]. However, aquatic ecosystems provide
about half of global net primary production [10]. The understanding
of the processes underlying the ecosystem functioning of aquatic
systems and the impact of global change is far beyond our
understanding of the terrestrial systems [11,12]. As results from
terrestrial systems cannot be transferred directly to aquatic systems
[13], studies on the functioning of aquatic ecosystems are required.

The general biodiversity-ecosystem functioning effects of species
richness, i.e., increase in ecosystem functioning and increase of the
stability of ecosystem functioning under ambient environmental
conditions, of aquatic systems show similar patterns like terrestrial
systems [4]. However, compared to their importance of primary
production, aquatic ecosystems are seldom studied regarding their
functioning. In a similar way, in most cases species richness was
manipulated and other aspects, such as functional diversity, genetic
diversity, or epigenetic diversity was less studied [4,6,7,14]. This is
particularly interesting, since most theoretical approaches like the
‘insurance hypothesis do not differentiate between the different
“levels” of biodiversity [15]. Thus, any increase of biological diversity,
i.e. biodiversity, is considered to contribute to an increase of ecosystem
functioning. And indeed, genetic [16-18] and even epigenetic diversity
of one single species increases ecosystem functioning [14].

Although ecosystems are faced to natural fluctuations most
ecosystem-functioning experiments are conducted under ambient
conditions. Ecosystems can be stressed to some degree without direct
destruction of the functioning of the system, but a decrease of
functioning was found in several systems [19-22].

In observational studies it is hard to distinguish the influence of
environmental factors like nutrient availability on species richness
from the effects of biodiversity on the functioning [23]. As an example

imagine a species-rich grassland with low biomass production due to
low nutrient availability. If nutrients are applied productivity, i.e., total
biomass production, may increase but species richness will decrease. In
this context a clear connection is known. But if the differences in
nutrient concentrations between two study sites are unknown this may
be different. One could compare a species rich, but nutrient poor,
grassland with another plot with low species number and good nutrient
availability. It will be found that low species richness increases
productivity. However, the cause of species loss influenced directly the
productivity so that nutrient availability overrides the effects of species
richness on productivity. Because in many cases the determinant of
Species richness in unknown I do not discuss such studies in detail
even if species distribution patterns were shown for microorganisms
recently [24-28]. In open oceanic systems a differentiation between
species richness influencing environmental factors and the
consequences of species richness per se is even more difficult since
clear borders between the sites are lacking or difficult do observe.
However, even in highly dispersed marine environments limits of
genetic connectivity were reported in several studies [29,30]. Recently,
progress on the patterns of functional traits of planktonic species
revealed biogeographic distribution patterns as well [31]. Nonetheless,
the patterns of traits do not represent species richness patterns and are
further based on only a few aspects of ecosystem functioning [31].
Thus, it reveals unknown how species composition is distributed
globally and how it is affected by environmental factors.

Instead of focusing on observational studies I here will refer to
ecosystem functioning studies manipulating biodiversity to observe
effects on ecosystem functioning and pinpoint to possible applications
of algae models in ecosystem functioning experiments.

General Questions Applied on Microalgae Models

Ecosystem functioning of primary producers

In aquatic systems positive biodiversity effects were observed in
manipulation experiments, i.e., experiments in which biodiversity was
artificially manipulated to simulate species loss or artificial
communities, with higher plants [20,32,33], macroalgae [34-38], and
microalgae [22,39-42]. Manipulation experiments with species from
oceanic systems show a positive biodiversity- ecosystem functioning
effect for primary producers, i.e., plants and algae [33]. Additionally to
species richness a positive effect of genetic diversity was reported for
sea grass clones [33]. Manipulation experiments on plankton
microalgae are scarce [42].

Microcosm experiments with microalgae are particularly appealing
because they grow fast and microcosms are small. Thus, a high
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number of replicates can be conducted. However, natural species
richness and abundance of microalgae were not used in the mentioned
experiments yet. Microalgae may be combined in abundances as found
in nature to enhance the transferability of the results to natural
conditions.  Using ‘natural communities combined from
monocultures in the lab can avoid the difficult discrimination between
the influence of biodiversity and those factors determining biodiversity
on the ecosystem functioning of observational studies. Further, a long-
lasting criticism of ecosystem-functioning experiments, ie., that
random ‘species lost is too artificial to be transferred to natural
conditions [43,44], can be faced.

High number of species

Most communities comprise a lot of different species. This is a
major problem in manipulation experiments of large species since the
instalment of mesocosms is logistically difficult and time consuming.
Combining microalgae from monocultures is very fast done, especially
if they are grown in liquid culture media. Thus, species richness levels
found under natural conditions can be used for the experiments.

Different levels of biodiversity

In a similar way, other measurements of biodiversity such as genetic
diversity or functional diversity are easier to study in small systems. A
major aspect for using microorganisms in this particular point is the
possibility of isolation of single autogenic strains (clones) or the use of
a few individuals as initial population to obtain populations of reduced
genetic or functional diversity. Once isolated, such strains or
populations can be combined to artificial communities and
experiments on their functioning can be conducted. Further,
epigenetic influences on ecosystem functioning may be studied in
these systems as well as changes in epigenetic characteristics may be
induced by different treatments of the strains previously. Even if this
does not lead to a more realistic community of organisms it might be
of interest to combine physiological research with ecology. As an
example a study comparing niche differences and phylogenetic
diversity in paired species assemblages of 37 freshwater green algae
revealed no influence of evolutionary relatedness on ecological
mechanisms [45]. However, the influence of niche differences to
relative fitness differences was shown [45].

Different ecosystem functions

Most ecosystem functioning experiments of primary producers
focused on biomass production [4].Other functions like nutrient
concentrations or primary production are less studied [4]. Here,
microalgae provide the opportunity to measure photosynthesis
directly by using pulse-amplitude-modulated fluorescence and the
pigment content can be determined for several target pigments. The
determination of different functions in an ecosystem functioning
experiment will lead to a more detailed understanding of the
functioning of the whole communities.

Temporal performance of communities functioning

The temporal performance of biodiversity dependent ecosystem
functioning was only tested in a few studies [46-48]. In microcosm
experiments with microalgae the temporal performance can be studied
with dozens of generation turnovers in some weeks. Such an
experiment with grassland species would last several years.

Environmental fluctuation and stress

Including environmental fluctuations in the range of natural
incidence can lead to a more detailed understanding of ecosystem
functioning under realistic conditions. A stress application, i.e., a
change in environmental conditions which may not be observed in
nature, on the other hand can help to understand the general impact
on the functioning of ecosystems. Here two main strategies of studies
on stress applications in biodiversity-ecosystem functioning
experiments can be seen. First, studying the influence of different
stress types on ecosystem functioning. This was done in only a few
experiments in aquatic systems [22]. Similarly to the observation of
different ecosystem functions, the comparison between the influence
of different stress types will help to understand ecosystem functioning.
Different stress types may lead to different plant community response
and thus the underlying mechanisms of biodiversity effects. Here, two
main groups of mechanisms can be differentiated, selection effects
(sometimes called portfolio or sampling effects) and complementarity
effects. Selection effects refer to an over-proportional growth of one or
only a few species on the cost of others, while complementarity effects
refer to a better performance of most species in mixture compared to
the monocultures. To differentiate these mechanism groups
monoculture data are crucial [49]. Future experiments may compare a
«limiting”, i.e., a stress leading to lower levels of nutrient or water
availability e.g. salinity or drought, with a “destructing’, i.e., a stress
physically damaging for example the photorespiratory apparatus e.g.
UV radiation. Here, different stress types may or may not lead to
different underlying mechanism groups. A second aspect of stress is its
intensity. Although stress intensity is was included in theoretical
approaches since about 20 years [50] there are only a few studies on
ecosystem functioning effects manipulating simultaneously stress
intensity and biodiversity [51]. Three of those studies [52-54] were
conducted in terrestrial systems, while one [22] used microalgae. The
latter experiment required a total of 3456 microcosms because two
different stress types in six stress intensities were applied. Such an
experiment would have been almost impossible with larger plant
species. In general, the relationship between biodiversity and stress
intensity regarding ecosystem functioning was identified as poorly
studied [51]. A focus on the influence of biodiversity on ecosystem
functioning at different stress intensity levels will contribute to
maintain effective ecosystem functioning in future ecosystems.
Another aspect is to combine the important insights of physiological
research and ecology. Since physiology focuses on processes of a single
species it is artificial in the stress application itself and in the point that
almost all species co-occur with other species. However, as we need to
understand how ecosystems work our aim should be to understand the
influence of both, biodiversity and external factors on the functioning
of ecosystems. As there isa great variety of physiological studies on
microalgae an approach to combine both disciplines would be
possible.

Why limiting to primary producers?

As most biodiversity-ecosystem functioning research was
concentrated on a single trophic level, namely primary production, in
the past, we now need to include trophic interaction into our
experimental approaches. This statement is not new [54,55]. However,
studies on food webs are difficult to conduct due to a variety of
reasons. One major reason is the logistically difficult instalment of
such experiments with large species in terrestrial systems. An
advantage of using species from aquatic ecosystems would be that the
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diversity of different trophic levels can be manipulated in microcosm
experiments easily as primary producers, associated bacteria and
grazers are small. As stated above, oceanic plankton communities are
important to global primary production and further build the basis of
food webs crucial to a variety of human ecosystem services like
fisheries and pollutant fixation. The complexity of trophic flows
between organisms reaching from primary producers to
mesozooplankton is high and difficult to model [42,56-58]. On the
other hand, exactly this complexity of organisms in oceanic plankton
offers a great opportunity for manipulation experiments addressing
specific questions.

General Short comings of Microalgae in Experiments

Identification of the included species

The combination of microalgae is quite easily done. However, as
they are small and often lack a great variety of morphological
characters they are difficult to identify. An example is the ‘genus’
Chlorella (Trebouxiophyceae) in which some species described on
morphological characters are now treated in another class of green
algae (Chlorophyceae), e.g. the strains SAG 2334 and SAG 2337,
“Chlorella emersonii, Culture Collection of Algae Gottingen. The
morphological differentiation is particularly difficult if close relatives
are used in the experiments or the organisms are faced to stress
leading to morphological deformations. However, this may be faced
with modern molecular biological methods like real-time PCR or FISH
labeling [59-61].

Contaminations

Using axenic, i.e., only one species containing cultures with no
infection of bacteria, fungi or viruses, cultures would be ideally for the
mentioned experiments. However, since most oceanic organisms are
not cultivable in axenic cultures, influences of contaminants may
influence the experimental results. Especially through their fast growth
virus replication may be critical. However, as studies on such
influences on biodiversity - ecosystem functioning effects were not
conduced yet it is unknown how and to which degree such
contaminants will affect the functioning of the communities compared
to the monocultures containing the same contaminations. If the
included strains stem from the same environment such influences may
be negligible since all organisms were faced to the contaminants
previously. Further, seen a strain as consortium, i.e. a combination of
different organisms, may be one way to deal with this problem.
Additionally, this can be studied by cross-experiments combining all
species under study with each other and the observation of the
development of bacterial or fungi growth or virus infections.

Transferability of the experiments to other biomes

As mentioned above, the results of ecosystem-functioning
experiments under fluctuating environmental conditions conducted in
aquatic systems cannot be transferred directly to terrestrial
ecosystems. However, aquatic, and particularly oceanic, ecosystems are
crucial for the primary production of the earth. Thus, the principles of
the functioning of these ecosystems should be better understood. By
using model microcosms manipulations of the environmental
conditions for the communities can be applied, leading to a better
understanding of the mechanisms and responses of such communities.
Using aquatic model organisms thus does not per se have the

limitation to a model for other biomes. However, experimental studies
on aquatic ecosystems provide qualitatively comparable results to
terrestrial ecosystem functioning.

Conclusion

Overall, algae and their associated species can provide a great
variety of model systems. With these model systems specific questions
about ecosystem functioning can be addressed. Even if the results of
such model systems may not validly be transferred to other biomes the
increased thread of oceanic ecosystems should be reason enough for
research in this field. Further, results from microcosm experiments
can be expected faster than from experiments with large species. My
aim is to promote the use of microorganisms, especially primary
producers, in ecological research. At least for pilot studies the
advantages through their fast growth and the small scales of the
microcosms are obvious.
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