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Abbreviations 
ADI-R		 Autism Diagnostic Interview, Revised

ADOS		 Autism Diagnostic Observation Schedule

ASD			  Autism Spectrum Disorder

CA1			  Cornu Ammonis 1

CA3			  Cornu Ammonis 3

CR			  Calretinin

Dlx5/6		 Distal-less homeobox 5/6

EEG			  Electroencephalogram

Emx1			 Empty spiracles homeobox 1

EN2			  Engrailed 2

EPSC			 Excitatory postsynaptic potential

GABA		 Gamma aminobutyric acid

Gad67		 Glutamic acid decarboxylase 67

GE			  Ganglionic eminence

HGF			  Hepatocyte growth factor

HOXA1		 Homeobox A1

MSN			  Medium spiny neuron

NF1			  Neurofibromin 1

NrCAM		 Neuronal cell adhesion molecule

OFC			  Orbital frontal cortex

PV			  Parvalbumin

PI3K			  Phosphoinositol 3 kinase	

PLCγ			 Phospholipase C gamma

RAS			  Rat sarcoma

Six3		 Sine oculis-related homeobox 3

SNP		 Single nucleotide polymorphism

SRS		 Social Responsiveness Scale

SST		 Somatostatin

tPA		 Tissue-type plasminogen activator

uPA		 Urokinase plasminogen activator

uPAR/PLAUR 	 Urokinase plasminogen activator receptor protein/gene

WT		 Wild type

Introduction 
Met is a tyrosine kinase receptor which binds the high-affinity 

ligand hepatocyte growth factor (HGF) [1]. Both Met and HGF are 
initially produced as single-chain pro-proteins, which are subsequently 
processed into their mature forms by proteolytic cleavage [2]. In the 
case of HGF, this is accomplished by enzymes such as matriptase [3], 
HGF activator [4], tissue-type plasminogen activator (tPA, gene: Plat) 
[5] or urokinase-type plasminogen activator (uPA, gene: Plau) [6]. The
proteolytic activity of uPA  is increased upon binding to its receptor
(uPAR, gene:Plaur) [7]. Upon binding to HGF, Met auto-phosphorylates
creating a multi-substrate docking site for a number of adaptor proteins
[8]. Downstream targets of HGF-Met signaling include PI3K, RAS, and
PLCγ [8]. Potentially owing to this diverse array of downstream targets,
Met signaling has been implicated in cellular processes as varied as
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Abstract
Variants of MET, a receptor tyrosine kinase which binds the ligand Hepatocyte growth factor (HGF), have been 

linked to elevated risk for developing autism spectrum disorders (ASD) in humans.  Though best known as a proto-
oncogene, MET also plays important roles during normal development, including the development of the central 
nervous system.  Recent studies in several mouse lines have shown that mice with reduced HGF-Met signaling 
have altered profiles of interneurons in the cortex, striatum, and hippocampus. Alterations in neuronal development, 
particularly in the cerebral cortex, may contribute to the pathology of developmental disorders, including autism. 
Other studies have shown changes in excitatory signaling in the Met-deficient cortex. Interestingly, mice with deficient 
Met signaling also show behavioral alterations characteristic of autism.  Here we review anatomical and behavioral 
findings in mice with altered HGF - Met signaling.
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proliferation, migration, survival, the formation of neuronal processes 
[9-19].  

Both Met and HGF are expressed in the developing brain in rodents 
[19-25] as well as primates [26, 27]. In mice, HGF and Met expression 
are detectable as early as E11.5. Expression of both HGF and Met is 
found in the cortical ventricular zone, and later in the cortical plate 
[15]. HGF is also expressed in the proliferative zone of the ganglionic 
eminence [15]. Met expression remains high from late embryonic 
through early post-natal development in the mouse [24,25,28] and at 
the corresponding ages in primate [27]. At late embryonic and early 
post-natal stages, Met transcript is also found in the amygdala, septum, 
and hippocampus [24]. Expression of both HGF and Met persists in the 
adult brain, albeit at reduced levels [19-22,24,29]. HGF-Met signaling 
may therefore participate in multiple phases of neurodevelopment.  
Furthermore, HGF and Met expression are found in multiple areas 
thought to be affected in autism spectrum disorders (ASD).

Genetic Association of Autism with the Met Signaling 
Pathway

ASD is characterized by language and communication deficits 
as well as restricted interests and repetitive or stereotyped behaviors. 
Multiple neuroanatomical abnormalities have been observed in the 
brains of autistic patients [32-38]. Genetics are thought to play a role 
in the etiology of ASDs, as they are highly heritable [39-44], although 
environmental influences could also play important roles [43,45]. 
A number of genetic syndromes include autistic-like features or are 
associated with an increased risk of ASD, including Prader-Willi 
[46,47] Fragile X [48,49], and Rett syndromes [50], as well as tuberous 
sclerosis [51].While multiple genomic regions have been linked with 
autism risk  a particularly strong candidate is a region on chromosome 
7q  [52], which contains putative autism susceptibility genes such as 
EN2, HOXA1, WNT2, and NrCAM  [53-58]. Chromosome 7q also 
contains the MET gene, located at 7q31 [59], as well as HGF, located 
at 7q21.1 [60]. Several MET variants have been shown to increase risk 
for ASDs [61-66]. One SNP in particular, rs1858830, has been found 
to be associated with the co-occurrence of autism with gastrointestinal 
conditions [63]. Another gene involved in HGF signaling, PLAUR 
(which encodes uPAR, and is found on chromosome 19q13) [67], has 
also been associated with autism.  The T allele of the PLAUR promoter 
variant rs344781 is associated with a 1.93 relative risk for ASD [62]. 
While some studies examining MET association with autism have failed 
to replicate the association of individual SNPs [64], evidence for the 
association of the gene as a whole is strong, especially when combined 
with the association of related genes.

In addition to genetic association, a number of MET variants have 
been shown to be functionally significant.  The C allele of rs1858830 
has been shown to reduce MET promoter activity [61]. MET protein 
levels are also reduced post-mortem in temporal cortex from autistic 
patients compared to controls [68]. A few MET variants have even been 
shown to have functional consequences at the level of behavior.  The C 
allele of rs1858830 is also associated with social and communication 
scores on the ADI-R, ADOS, and SRS [69]. The C allele of rs2237717 
and the G allele of rs42336 have been associated with altered facial 
emotion perception [70], which is altered in ASD. Given the repeated 
association of MET with autism, and the potential association of other 
genes in the pathway, it is highly likely that dysregulation of HGF-MET 
signaling could contribute to the pathology of ASD, in at least a subset 
of affected individuals.

Consequences of Altered Met Signaling
While MET is well validated as a risk gene for autism [61,63,70-72], 

only a few studies have examined the effects of loss of Met function in 
animals.  This is likely due at least in part to the embryonic lethality 
of constitutive knockouts. Met function appears to be required for 
proper placental [73] and liver development [74], and therefore global 
Met knockout mice die early during gestation. In order to avoid this, 
groups have used Cre-loxP recombination strategies to inactivate Met 
specifically in cells expressing Cre recombinase [19,23,75,76,].  

The Dlx5/6-Cre driver inactivates Met (Metfx/fx/DlxCre mice) in post-
mitotic GABAergic neurons originating in the Ganglionic Eminence 
(GE). GABAergic neurons from the GE become the inhibitory 
interneurons of the cerebral cortex, hippocampus, amygdala, and 
striatum, as well as the medium spiny neurons of the striatum [77].
The Metfx/fx/DlxCre mice show increased numbers of parvalbumin (PV) 
and somatostatin (SST) positive interneurons in the striatum, as well 
as a reduction in PV interneuron numbers in the sensorimotor and 
orbitofrontal cortex, but not in visual cortex [19]. Furthermore, at more 
caudal levels of the striatum, a greater percentage of the population 
of PV positive interneurons was found in medial (associative), and 
fewer in lateral (sensorimotor) regions of the striatum than in control 
mice. Loss of Met function in embryonic interneurons therefore seems 
to affect the migration of GABAergic interneurons both within the 
striatum and between the embryonic striatum and cortex.  

Hippocampal interneurons are also generated from the ganglionic 
eminence and appear to be affected by loss of Met signaling. Fewer 
PV and calretinin (CR) positive interneurons were found in the CA3 
region of the hippocampus in Metfx/fx/DlxCre mice than in controls. 
Mice in which Met was inactivated in the proliferative zones of the 
ganglionic eminence using a Six3-Cre driver (Metfx/fx/Six3Cre mice) 
showed a similar loss of PV and CR cells in CA3, but further showed a 
loss of CR interneurons throughout the hippocampus, and an increase 
in PV interneurons in the dentate gyrus [23]. Alterations in the number 
of interneurons in the hippocampus of Metfx/fx/DlxCre mice are likely 
due to a migration defect similar to that seen for cortical and striatal 
interneurons in these animals.  Deficits in the Metfx/fx/Six3Cre mice could 
also be due to changes in the specification of different subtypes of 
interneuron. It is unlikely that the deficit in Metfx/fx/Six3Cre mice is due to 
decreased proliferation of interneurons, as similar a similar pattern of 
GABA staining found in the hippocampus [23].

In order to examine the functions of Met in the developing cortex, 
a similar system has been employed using Cre recombinase expressed 
under the control of the Emx1 promoter to inactivate Met in excitatory 
neurons and glia of the cerebral cortex and hippocampus. Notably, this 
system does not directly ablate Met function in cortical GABAergic 
interneurons, which originate in the ganglionic eminence [76,78] found 
that pyramidal neurons in layers 2 and 3 of the anterior cingulate cortex 
of Metfx/fx/Emx1Cre mice showed significant alterations in dendritic 
arbor. Metfx/fx/Emx1Cre neurons showed reduced apical dendritic arbor 
length distal to the cell body, and increased basal dendritic arbor length 
proximal to the cell body.  These differences appear to be primarily due to 
changes in branching complexity.  Since the distal apical dendritic arbor 
of pyramidal neurons receives distinct synaptic inputs from the basal 
and proximal apical arbor [79], this could result in changes in synaptic 
connectivity.  No difference was found in the number of dendritic 
spines between Metfx/fx/Emx1Cre and control mice, but an increase in 
the volume of spine heads was observed [80]. Interestingly, striatal 
medium spiny neurons (MSNs), were also found to show increases 
in both dendritic arbor length and spine head volume. Alterations in 
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MSNs would suggest that loss of Met signaling in cortical pyramidal 
neurons may have effects on cells targeted by cortical efferents, as 
striatal MSNs are not targeted by the Emx1-Cre driver [78]. As spine 
structure is closely related to function, and spines are the main target of 
glutamatergic synapses, alterations in spine head volume could produce 
changes in excitatory neurotransmission [81]. Indeed, alterations in 
excitatory neurotransmission have been shown in the cortex of Metfx/fx/
Emx1Cre mice. In the anterior cingulate cortex of Metfx/fx/Emx1Cre mice, 
stimulation layer 2/3 pyramidal neurons produced stronger excitatory 
post-synaptic potentials (EPSCs) in layer 5B corticostriatal projection 
neurons [82].While changes in EPSC amplitude in this population 
could be due to either presynaptic or postsynaptic alterations, no 
difference was found in paired pulse ratios between Metfx/fx/Emx1Cre  
mice and controls, suggesting that at least some presynaptic parameters 
(i.e. release probability) are unaltered by loss of Met signaling.  In 
contrast, no changes in EPSCs were found in corticopontine projection 
neurons after stimulation in layer 2/3 [82], further suggesting that the 
increased connection strength in corticostriatal neurons is likely due to 
post-synaptic mechanisms.  

Alterations in cortical connectivity in Metfx/fx/Emx1Cre mice 
reflect some changes seen in ASD. Altered cortical connectivity is 
thought to play a role in the etiology of ASD [83], including local 
hyperconnectivity (as demonstrated in Metfx/fx/Emx1Cre  mice) as 
well as long-range hypoconnectivity.That hyperconnectivity in the 
Metfx/fx/Emx1Cre mice appears specific to corticostriatal projection 
neurons is significant, as both corticostriatal structural [84] and 
functional connectivity [85,86] have been shown to be altered in 
ASD. Furthermore, there is some evidence of an association between 
changes in striatal functional connectivity and repetitive behavior in 
children with ASD [86].

Unlike Met−/−or Hgf−/−mice which die before embryonic day 12 
[74,87], Plaur−/− mice live to adulthood [88]. These mice exhibit reduced 
HGF levels [25,89] suggesting reduced HGF-Met signaling, and possible 
alterations to HGF mediated developmental processes. HGF has been 
reported to facilitate forebrain GABAergic interneuron migration 
[89,90]. Several studies have found decreased numbers of GABAergic 
interneurons in the brains of Plaur−/− mice [25,28,91,92]. Fewer GABA 
positive cells were found in the cingulate and parietal cortex of Plaur−/− 
mice than in WT mice [28]. In a parallel study, Gad67+ cells were found 
to be decreased in the parietal cortex, as well as in the dentate gyrus and 
the CA1 region of the hippocampus [91]. No change in either GABA 
or Gad67 staining was observed in occipital cortex [28,91]. Among 
GABAergic interneurons, PV expressing cells seem to be preferentially 
affected in Plaur−/− mice.  Decreases in PV+ interneurons have been 
noted in the frontal areas, including the anterior cingulate [28], and 
orbital frontal cortex (OFC) [92], and parietal cortex, in particular in 
somatosensory areas [25,28,91],as well as in the striatum (Bissonette 
et al., 2010).  In the hippocampus, however, the PV+ population is 
unaffected, and there is a reduction in somatostatin+ (SST+) cells in 
the dentate gyrus and CA1[91]. In the cases of the somatosensory and 
orbital frontal cortical regions and the striatum, over expression of 
HGF in astrocytes restored the numbers of PV+ interneurons [25,92], 
suggesting that the decrease in HGF levels seen in Plaur−/− mice is 
responsible for the observed interneuron deficits.  

Behavioral Consequences of Altered HGF-Met Signaling
While cellular and physiological changes in mice with altered HGF-

Met signaling are informative, they would not make for convincing 
animal models without accompanying behavioral alterations reflective 

of ASD symptoms.  While not all of the mouse lines which have been 
examined have been extensively characterized, several show behavioral 
phenotypes which suggest that altered HGF signaling could contribute 
to autistic-like behavior.

Plaur−/− mice show a number of behavioral alterations when 
compared to WT littermates.  Among these, Plaur−/− mice have been 
shown to display increased anxiety-like behaviors in the light-dark 
avoidance test and the elevated plus maze [25,28]. In addition to 
increased anxiety, Plaur−/− mice have impaired cognitive flexibility as 
measured by reversal learning a process which has been shown to be 
dependent on the OFC [92-94]. Plaur−/− and WT animals both learn 
the rules similarly, but once the rules are reversed, the Plaur−/− mice 
require more trials to master the task [92]. The Plaur−/− mice exhibit 
abnormal electroencephalogram (EEG) activity and have spontaneous 
seizures, as well as an increased sensitivity to chemically induced 
seizures [28]. HGF supplementation rescues the seizures and anxiety 
behaviors seen in Plaur−/− mice [25]. Our recent findings indicate 
impaired social interactions and attentional processing in Plaur−/−

mice (unpublished observations) and current studies are focused on 
assessing communication responses in the WT and Plaur−/− groups.

Metfx/fx/DlxCre mice show no alterations in locomotor activity in 
the open field or in tests of anxiety-like behavior such as light-dark 
avoidance or the elevated plus maze [19]. Metfx/fx/DlxCre mice were also 
tested in the Morris water maze, which can be used to test both spatial 
learning (mediated by the hippocampus) and procedural learning 
(mediated by the striatum) [95,96]. In the water maze, Metfx/fx/DlxCre 
mice performed similarly to controls during a probe test, as well as 
during a reversal probe test where the hidden platform was moved to 
the opposite quadrant from where it was during training.  Both tests 
are used to measure hippocampal-dependent spatial learning [95,97]. 
However, in a cued platform task, which is dependent on striatal 
function [95,97], Metfx/fx/DlxCre mice were slower to reach the platform 
than control mice. This suggests that despite abnormalities in the 
population of interneurons in both the hippocampus and striatum of 
Metfx/fx/DlxCre mice, hippocampal function remains relatively normal, 
while striatal function, mainly habit learning, is disrupted.

Reversal learning was also affected in Metfx/fx/DlxCre mice [19], 
similarly to Plaur−/− mice. Metfx/fx/DlxCre mice performed similarly 
to controls in learning the initial discrimination task, but required 
significantly longer to reach criterion during the reversal portion [19]. 
That the mice acquire the initial discrimination normally suggests that 
they have no problem learning the task or discriminating between the 
cues, while their deficit in the reversal portion of the task suggests a lack 
of behavioral flexibility or a problem inhibiting the previously rewarded 
response. A similar loss of behavioral flexibility may be involved in the 
restricted or repetitive behavior which is frequently observed in autistic 
children [98].  

Conclusions
Mice with altered HGF-Met signaling show alterations in 

the interneuron populations of the frontal cortex, striatum, and 
hippocampus.  While spatial learning (dependent on the hippocampus) 
appears normal in Metfx/fx/DlxCre and Plaur−/− mice, Metfx/fx/DlxCre mice 
show deficits in procedural learning, and both strains are impaired on a 
reversal learning task. In Plaur-/- mice, restoration of normal HGF levels 
via genetic intervention restores both interneuron numbers and normal 
behavior. Repetitive behaviors are frequently observed in ASD [98], 
and have been associated with diminished inhibitory control of prior 
responses [99], which depends on frontal-striatal circuits [100,101].  
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Inhibition of previously-rewarded responses is a critical component of 
reversal learning, and this may be inhibited in Metfx/fx/DlxCre and Plaur−/− 
mice [19,92]. It would therefore appear as though the loss of GABAergic 
(and in particular PV+) interneurons in the frontal cortex and striatum 
could contribute to the behavioral alterations observed in Plaur−/− mice, 
and possibly in Metfx/fx/DlxCre mice as well. For example, the OFC has 
been shown to be required for normal reversal learning [93], and both 
Plaur−/− and Metfx/fx/DlxCre mice show both reduced numbers of PV+ 
interneurons in the OFC and impaired reversal learning. Furthermore, 
supplementation of HGF levels in Plaur−/− mice restores both PV cell 
number and reversal learning to normal [92]. While other causes 
cannot be ruled out, it would appear that the changes in interneuron 
numbers in the striatum and frontal cortex could lead to the behavioral 
changes seen in Plaur−/− and Metfx/fx/DlxCre mice by altering cortical and 
striatal signaling.  While cortico-striatal signaling has been shown to 
be altered in Metfx/fx/Emx1Cre mice [82]. Further studies are needed to 
elucidate the effects of loss of Met signaling in excitatory neurons on 
behavior.
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