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Introduction
The term lipids describes a broad group of molecules with 

hydrophobic or amphiphilic nature including fatty acyls, glycerolipids, 
glycerophospholipids, sterol lipids, and sphingolipids which are widely 
distributed and associated with a plethora of biological functions 
including structural components, energy storage, and signaling 
cascades [1]. 

Important functions in cellular signaling are attributed to the 
family of sphingolipids with the major subclasses ceramides and 
sphingosines. These molecules are of high importance in regulation of 
cellular permeability, apoptosis, and cellular transformation. Although 
sphingolipids do not contain a glycerol group, they have a structural 
similarity to glycerophospholipids. The common structural feature, 
a sphingoid base backbone with eighteen carbon amino-alcohol 
structure, is converted into ceramides, phosphosphingolipids, and 
other species. Sphingolipids may be conveniently described in terms 
describing backbones, head groups, and sugar units [2]. Following 
biochemical pathways, the sphingoid base backbone is available by 
de novo synthesis from serine and a long-chain fatty acyl-CoA or by 
cleavage of sphingomyelin [3]. It is beyond the scope of this article to 
describe sphingolipid metabolism and biochemistry in detail, but the 
reader is referred to more specific articles on this subject [4]. 

The term complex sphingolipids describes the structural feature 
of sphingolipid species differing by both the order and type of sugar 
residues attached to their groups. In liver and intestine, sphingolipids 
are abundantly found. They are essential for structural integrity and act 
as bioactive messengers modifying diverse cellular activities including 
proliferation, differentiation, apoptosis, and inflammation [5]. In 
the gut, barrier function, cholesterol absorption, inflammation, and 
tumourigenesis are modified by sphingolipids [6].

Extraction of lipids from liver and intestinal tissues follows standard 
algorithms [7]. In general, tissues of interest should be macroscopically 
dissected (e.g. preparation of the mucosal layer) and afterwards 
homogenized without cryoconservation. An internal lipid marker must 
be added to the solution prior to the extraction of lipids with methanol 
and chloroform. Cryoconservation and storing of the extract until the 
measurements is possible.

This article will not in detail consider the many approaches and 
techniques that can determine and characterize lipids. The following 
sections give an overview of mass spectrometry-based lipid analysis 
and profiling of sphingolipids that are commonly used by lipidologists 
to investigate lipids in health and disease.

Principles of Mass Spectrometry-Based Lipid Analysis
To understand and analyze the impact of lipids in health and 

disease, mass spectrometry-based lipid analysis, so called ‘lipidomics’, 
has emerged as a promising tool in the last few decades. Lipidomics, the 
large-scale analysis of cellular lipid pathways and networks allows the 
study of the whole set of lipids of organisms/cells/tissues. It provides the 
scientists with methods to analytically distinguish different lipid species 
that are often metabolically interconvertible and structurally similar [8]. 
Because of the complexity of the lipidome, comprehensive techniques 
are required for elucidation of physiological properties and functionality 
of different lipid metabolites. Since mass spectrometry based techniques 
have become powerful tools in lipidomic methodology, today scientists 
have the opportunity to detect and quantify multiple lipids in a single 
sample [1,9].

The technical components of mass spectrometers always include an 
ion source to generate charged ions, a mass analyser to separate those 
ions by their mass to charge ratio, and a collector/detector to detect and 
quantify the analyzed sample. Two approaches that provide sensitivity 
and structural specificity in ion generation are Electro spray Ionization 
(ESI) and Matrix-Assisted Laser Desorption Ionization (MALDI) mass 
spectrometry (Figure 1). ESI is accomplished by continuously infusing a 
solution of lipids through a small capillary into an electric field, thereby 
generating very fine charged lipid droplets. These lipid droplets rapidly 
evaporate and divide into individual charged ions, as they travel along 
the electric field and enter the mass spectrometer, typically a triple 
quadrupole mass analyzer. This ionization technique results in a very 
soft ionization and yields primarily intact molecular species with little 
or no fragmentation. In contrast to ESI, MALDI mass spectrometry, 
typically applied in conjunction with time-of flight mass analyzers, is a 
laser-based soft ionization method that is most often used for protein 
analysis and only to a small extent for lipid analyses. In MALDI, the 
lipid sample is mixed with an organic matrix component and irritated 
with a laser to ionize the lipid molecules. After ionization, the analytes 
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Abstract
Molecular analysis of lipids has essentially improved by introduction of multidimensional mass spectrometry. This 

important technique allows identification and quantification of complex sphingolipids, e.g. glycosphingolipids and 
ceramides, from diverse intestinal sources including liver and bowel. In the following a short overview is given concerning 
this important technical tool which facilitates molecular characterization of lipids in intestinal physiology and diseases.
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are accelerated out of the MALDI source into a mass analyzer. Matrix 
choice is critical for generation of intact molecular ions. One role of 
the matrix is to prevent analyte-analyte molecular interactions during 
the ionization process. Because of the nature of MALDI ionization, this 
technique has been successfully utilized for more complex lipids [10-
13]. 

Furthermore, the power of MALDI technology lies in its application 
for tissue imaging mass spectrometry. This direct tissue analysis of 
lipid species provides the opportunity to identify not only quantities 
but also the distribution and subcellular localization of lipids within 
the tissue [14,15]. With this point of view MALDI overcomes other 
approaches, because almost all techniques used to identify and quantify 
lipids involve their extraction and removal from their biological source 
resulting in a loss of topological information. 

Mass spectrometry provides many advantages in lipid analysis, 
especially sensitivity, specificity and structural information. The 
combination of state of the art tandem mass spectrometry techniques 
(MS/MS) and classical separation techniques such as high pressure 
liquid chromatography (HPLC) provides an additional criterion for 
specific identification of lipid species due to their retention time and also 
allows distinction of isomeric species. Thus, liquid chromatography-
mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/
MS)-based methods are currently one of the most popular technologies 
in lipid research [1,8,9]. 

Another mass spectrometric technique that is referred to as shotgun 
lipidomics works without direct coupling of any chromatography for 
lipid separation. Different from the LC-based lipid analysis, this direct 
infusion-based lipidomic technique allows absolute quantification of 
hundreds of lipid species in small quantities with high throughput. 
However, one significant limitation is the inability to distinguish 
isomeric and isobaric lipid species.

Collectively, numerous new lipidomic techniques have already been 
developed and more will come in the next years since their application 
for the identification of lipid pathways and functions, the investigation 
of lipid-mediated disorders and drug evaluation among others has been 
increasingly recognized [16-19].

Profiling Sphingolipids with Mass Spectrometry
Sphingolipidomics, a section of lipidomics that focuses on the large-

scale analysis of the cellular sphingolipidome, is rapidly expanding. Due 
to the highly diverse and complex class of molecules, the emergence 
of comprehensive, structure specific and quantitative analyses of all 
sphingolipids is necessary to accurately distinguish the many different 
subclasses of sphingolipids. Elucidation of the roles of sphingolipids in 
cell structure, function and signaling is critical since this class of lipids 
comprises one of the largest numbers of bioactive lipid subspecies. 
The actual size of the sphingolipidome is not known so far, but it is 
considered to be immense.

Three basic approaches for an in depth and large-scale analysis of 
sphingolipids have been rapidly developing, the LC-MS- or LC-/MS/
MS methods, the direct infusion-based shotgun-lipidomics and the 
MALDI imaging mass spectrometry. LC-MS/MS has been used to 
identify, quantify, and determine the structures of free sphingoid bases, 
free sphingoid base phosphates, ceramides, monohexosylceramides 
(both galactosylceramides and glucosylceramides), lactosylceramides, 
sphingomyelins and more complex glycosphingolipids [10,20-23]. 
Quehenberger and colleagues, for example, successfully employed LC-
MS/MS to profile sphingolipids in human plasma. By combination of 
normal-phase HPLC and ESI-MS analysis, over 200 individual plasma 
sphingolipids were identified and quantified [24]. Direct infusion 
based shotgun lipidomics enables determination of the levels of many 
low-abundance sphingolipid metabolites e.g. ceramide-phosphates, 
sphinganine and sphingosinephosphates in a variety of biological 
samples [25,26]. In a recent study the determination of sphingosine 
levels in the lysosome was achieved using this method [25]. Although 
shotgun lipidomics has some limitations, these methods are very useful 
and efficient to quantify the molecular species of one entire lipid class 
from any unknown sample. Different from LC-MS/MS- and infusion-
based techniques, MALDI tissue imaging has been applied to directly 
analyze tissues and cells for their lipid content and localization without 
loss of topological and sub-cellular information. Direct probing of brain 
slices via MALDI e.g. revealed that the cerebellar cortex contained low 
levels of sphingomyelins and sulfatides, but high levels of gangliosides 
whereas the cerebellar peduncle contained large amounts of sulfatides 
and smaller quantities of gangliosides [27]. In another tissue imaging 
study, Liu and colleagues observed that sulfatides were mainly located in 
ovarian carcinoma epithelium, but not in histologically normal ovarian 
epithelium [28]. The development of MALDI tissue imaging greatly 
enhances the application spectrum of sphingolipidomic analysis. 

With the ongoing development of these powerful sphingolipidomic 
approaches the role of sphingolipids in cellular functions and pathologic 
states will become clearer, and the identification and establishment of 
preventive and therapeutic approaches will become more focused. 
Thus, sphingolipidomics should enable scientists to improve the 
understanding of the cellular sphingolipidome.

Concluding Remarks
Lipids are molecules of high structural diversity and function. 

Complex analysis of lipid tissue composition (lipidomics) is a powerful 
approach to get an in vivo structure-function relationship. In the field of 
lipid analysis, the innovating tool mass spectrometry is well established. 
In particular, mass spectrometry is of high importance for sphingolipid 
analysis from several biological sources.
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Figure 1: Principles of mass spectrometry. A: Matrix-assisted laser 
desorption ionization (MALDI) mass spectrometry is illustrated. Matrix 
loaded samples are ionized and further characterized with mass analyzer 
and ion detector; B: Electrospray ionization (ESI) mass spectrometry is 
accomplished by continuously infusing a sample solution into an electric 
field, generating very fine charged droplets with soft ionization and yields 
primarily intact molecular species with little or no fragmentation.
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