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Introduction 
Nature is the first source of basic compounds and molecules, from 

which bigger molecules are being formed. Since early 50s, natural 
substrates have been a source of various products that can be applied in 
food, drug, cosmetic, textile, and energy. Great emphasis has been given 
to the secondary metabolites of different natural species, especially 
plants [1-3]. 

Aquatic bodies cover a big portion of the earth (≈ 70% of the 
total area of the planet) providing a wide habitat for a large number 
of organisms [4,5]. Marine organisms are considered to be important 
feedstock for future bio refineries (co-producing biofuel and bioenergy). 
They have been found to be producing great amounts of secondary 
metabolites, which are divers in nature and efficacy [6-8]. 

Algae are diverse aquatic, photosynthetic organisms [9-11], 
representing 10% of the flora kingdom [12]. They are categorized into 
two groups, based on their biological structure; macroalgae (i.e., red, 
green and brown seaweeds) and microalgae (blue-green algae; normally 
a unicellular organism). 

Because of the fluctuating environmental conditions and nutrient 
content from one place to another, algae are known for their diverse 
high-content of fatty acids, fibers, antioxidants, carotenoids, sterols, 
proteins, phycocolloids, lectins, oils, amino acids, unsaturated fatty 
acids, and vitamins, which could be commercially utilized [6,9,12-
22]. Different algae cultivation methods produce different chemical 
compounds or different content thereof, which helps in cultures 
specification (i.e., due the secondary metabolites produced). This makes 
algae very attractive for drug research [16,18,23-25]. Algae research 
started in 1970s, emphasizing on four main areas including bioactive 
metabolites [15], toxins [26-28], chemical ecology [4,29] and biodiesel/
bioethanol [9,14,30-36]. 

Microalgae are found to be rich in carbohydrates, mostly in form 
of starch and other polysaccharides [37]. The average lipid content 
of algal cells is high and can reach up to 70 wt.% [38,39]. Especially 

macro algae are reported to be mini-factories of sugars, protein, and a 
wide range of bio-compounds with pharmaceutical, bio medicinal, and 
nutritional importance [40]. Furthermore, macro algae generally have 
a greater hydrolysable carbohydrate content than microalgae, hence 
higher ethanol production potential than some of current bioethanol 
feedstock [41]. 

This paper presents a review of molecular characterization and 
their potential applications. Furthermore, the extraction and analysis 
methods that were conducted on algae biomass to analyze for their 
metabolites were summarized and evaluated in this review. 

Figure 1 illustrates some of the interesting components of secondary 
metabolites and their possible usage in e.g. the pharmaceutical industry 
(Figure 1).

Molecular Characterization of Algae-extracted Chemi-
cals and their Possible Applications
Sulfated polysaccharides

Marine algae are the most significant source of non-animal Sulfated 
polysaccharides (SPs), where the chemical structure varies from one 
species to another [42-49]. The major SPs found in marine algae include 
fucoidan and laminarans of brown algae, carrageenan of red algae, and 
ulvan of green algae [50]. Recently, numerous SPs isolated from marine 
algae have attracted much attention in the fields of food, cosmetic, and 
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Abstract
Marine life is very rich in producing various and distinctive chemical components, both basic and complex. 

Due to the harsh conditions such as high salinity, deficiency of nutrients, light and space, which make the marine 
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to help them survive under such conditions. In many studies great emphasis has been given to the secondary 
metabolites produced by algae (macro and microalgae). Certain species of algae are known for their high content of 
fatty acids, fibers, antioxidants, carotenoids, sterols, proteins, phytocolloids, lectins, oils, amino acids, unsaturated 
fatty acids, and vitamins, which could be commercially utilized. 

Current algae studies emphasize on four main research areas: fuels, bioactive metabolites, toxins, and chemical 
ecology. This paper focuses on reviewing interesting biochemicals from algae biomass and their therapeutic 
applications. To achieve optimum extraction of high-value products, extraction methods and conditions were 
thoroughly presented in this review. Finally, different analytical approaches and techniques to identify the extracted 
chemicals were discussed.
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pharmacology [50]. Sulfated polysaccharides and polysulfates showed 
viral activity for a widespread variety of enveloped Viruses [51-53]. 
Microalgae and cyanobacteria extracts also showed anti-HIV activity. 
Sulfated polysaccharides prevent HIV cell replication, even at very 
low concentrations, whereas anti-viral activity increases by increasing 
the grade of sulfation and the molecular weight [54]. Béress et al. [55] 
studied the anti-viral extractives from brown algae (Fucusvesiculosus) 
and found that the water-soluble extracts demonstrate anti-HIV 
activity.

Phaeophyta (brown algae), Rhodophyta (red algae), and Chlorophyta 
(green algae) found to be producing sulfated polysaccharides that are 
active against pathogens [53]. 

Proteins and amino acids

Protein content in seaweeds varies from about 10% to 40% (w/w) per 
dry weight, and its content varies between species and it is influenced 
by the growth conditions [56]. Red algae are rich sources of proteins 
compared to other divisions of algae [57]. Lectins (hemagglutinins), 
one of the proteins found in seaweeds. Hemagglutinins have been 
found in 205 of 326 species of marine algae surveyed as was reported 
by Hori et al. [58]. Lectins exhibited various biological activities in cell–
cell communication and recognizing and binding carbohydrates [59] 
and anti-human immunodeficiency virus (anti-HIV) activity [60]. In 
cancer cells, lectins have the ability to exert functional effects to induce 
apoptosis; metastasis, and cell differentiation; moreover, antibiotic, 
anti-inflammatory, and human platelet aggregation inhibition effects 
were reported by Mendis and Kim [57].

A hemagglutinin from the marine red alga, Hypnea japonica, called 

‘Hypnin A’ presented ability to bind to glycoproteins bearing complex-
type N-glycans, but did not bind to any of the monosaccharides 
examined [61]. Matsubara et al. [62] reported that this lectin inhibited 
adenosine diphosphate (ADP)-or collagen-induced human platelet 
aggregation in based on the dose applied. 

In another study conducted by Hori et al. [58], three 
isohemagglutinins were isolated, labelled hypnin A-1, A-2 and A-3, 
from H. japonica. The three isohemagglutinins were indistinguishable 
with previous ‘hypnin A’ because they shared the same properties.

Other proteins, designated phycobilliproteins (PBPs), are commonly 
present in cyanobacteria and red algae [63]. PBPs are highly soluble and 
reasonably stable fluorescent proteins [64] involved in light harvesting 
in cyanobacteria (blue-green algae, procaryotic), rhodophytes (red 
algae, eukaryotic), cryptomonads (biflagellate unicellular eukaryotic 
algae) and cyanelles (endosymbiotic plastid-like organelles) [65]. 
PBPs were documented to exhibit functional effects, such as anti-
inflammatory, antitumor, antioxidant antiviral, antiatherosclerosis, 
hepatoprotective activity, lipase activity inhibitor, serum lipid reducing 
agent, and an inhibitor to absorption of environmental pollutants into 
the body [63,66]. 

C-Phycocyanin from Spirulina platensis displayed antioxidant [67] 
as well as inhibitory effect of on the growth of human leukemia K562 
cells in a dose- and time-dependent fashion [68]. Aphanizomenon flos-
aquae were reported by Benedetti et al. [69] as a source of phycocyanin 
that exhibit antioxidant activity. 

Moreover, amino acids extracted from Chlorococcum humicola 
demonstrated an antibacterial as well as antifungal activities [70].

Figure 1: Components of secondary metabolites of marine algae and their possible application [42-48]. 
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Lipids

Some microalgae species have been recognized as commercially 
promising biomass for third-generation biofuel production, along with 
their nutritional and pharmaceutical applications. This is due to the high 
and unique lipid composition generated by the influence of microalgae 
rapid growth under a range of environmental conditions [71]. Adapting 
to harsh conditions resulted in production of diverse types of algae with 
extensive lipid patterns [72]. According to Metting Jr [73], the average 
lipid content of algal cells varies between 1% and 70% and can reach up 
to 90% of dry weight under certain growing conditions [38].

Long-chain (C35-C40) alkenones and their derivatives have been 
identified in haptophyte Chrysotila lamellose using gas chromatography–
electron impact mass spectrometry [74]. These compounds were fairly 
stable during aging of C. lamellose when compared to sterols [74]. In 
addition, an uncommon polar lipid has been isolated from the red alga 
Gracilaria verrucosa, where it showed an inositol phosphoceramide 
structure [75].

Microalgae contain polar lipids, which were identified to be 
anti-inflammatory and anti-thrombotic [76]. Monogalactosyl 
diacylglycerols, digalactosyl diacylglycerols and phosphatidylglycerol 
are examples of polar lipids. The most studied lipids in algae are 
represented by polyunsaturated fatty acids (PUFAs) which showed 
different beneficial effects, such as enhanced heart health [77]. 
PUFAs are useful in the prevention of cardiovascular diseases [78]. 
Furthermore, Venugopal [79] indicated that the consumption of 
PUFAs can possibly prevent atherosclerosis, arrhythmias, and chronic 
obstructive pulmonary diseases, reduce blood pressure, reduce 
symptoms in asthma patients, fight against manic-depressive illness, 
protect against chronic obstructive pulmonary diseases, alleviate 
symptoms of cystic fibrosis, prevent relapses in patients with Crohn’s 
disease, prevent various cancers, provide bone health, and improve 
brain functions in children.

Sterols: Sterols are considered one of the most important chemical 
produced by algae, specifically by microalgae [80] with larger diversity 
when compared to higher plants [81,82]. They are essential components 
of the membranes of all eukaryotes, since they control membrane 
fluidity and consequently permeability. Sterols can be significant in 
cell proliferation, signal transduction and membrane-bound enzymes 
activity regulation [83].

Sterol structures range from the predominance of a single sterol, 
such as cholesterol in marine eustigmatophytes and 24-methylcholesta-
5,22E-dien-3β-ol in some diatoms and haptophytes (prymnesiophytes), 
to mixtures of ten or more 4-desmethyl and 4-methylsterols in some 
species of dinoflagellates [84]. 

Generally, sterol composition in microalgae differs from one strain 
to another and is influenced by growth conditions, such as temperature, 
light intensity, and growth stage [84-86]. 

Terpenes and terpenoids: Diterpenes were reported as an antiviral 
compounds [87]. Manzo et al.  [88] analyzed the secondary metabolites 
of the brown algae Dictyota ciliolate, which contained diterpenes as 
Dictyodial, Dictyol C, Dicytol H, those showed antiviral activities. For 
instance, anti-HIV-1 effects were exhibited by diterpenes extracted 
from D. menstrualiswere [89]. Also, diterpenes extracted from Dictyota 
pfaffii and Dictyota menstrualis possessed in-vitro inhibitory effects on 
herpes simplex virus [90].

Epitaondiol is a terpenoid isolated from the brown algae Stypopodium 

flabelliforme, which is a tropical, polycyclic meroditerpendoids-
rich species [91]. This component showed many biological activities 
as mentioned by Areche et al. [92]. Epitaondiol diacetate showed 
pharmacological effects in the rat cardiovascular system; where negative 
inotropic and chronotropic effects were observed. The compound also 
possesses noticeable anti-inflammatory effects [93].

Furthermore, the pharmaceutical applications of several 
meroditerpenoids were discussed by Sabry et al. [94]. For instance, 
stypolactone and atomaric acid are potent against human lung and 
colon carcinoma cells.

Pacifenol is a terpenoid isolated from seaweeds of the marine 
alga Laurencia claviformis and Laurencia tasmanica. An antimicrobial 
activity of pacifenol derivatives has previously been reported, after 
testing against some microrganisms, especially against Pseudomonas 
aeruginosa and Streptococcus enteriditis [93]. Furthermore, pacifenol 
exerts an inhibitory activity on both, inflammation [95] and allergy [93].

The genus Stypopodium is a rich source of polycyclic 
meroditerpenoids, such as stypodiol, epistypodiol, stypotriol, 
taondiol, epitaondiol, 2β,3α-epitaondiol, flabellinol, flabellinone, 
stypotriolaldehyde, stypohydroperoxide, isoepitaondiol, and 14-ket-
ostypodiol. Among all, epitaondiol has displayed potent topical 
anti-inflammatory activity [96]. Also, antimicrobial effects against 
gram-positive and gram-negative bacteria, especially against E. 
faecalis. Antiviral activity against herpes simplex, and antiproliferative 
properties were exhibited by epitaondiol [93].

The derivative of 14-keto-stypodiol diacetate (SDA) was extracted 
from the algae Stypopodium flabelliforme, which showed some anti-
inflammatory effects [97,98]. 14-ketostypodiol diacetate was proved by 
Depix et al.  [99] to have a potential to microtubules’ assembly and cell 
proliferation in human prostatic cancer cells. Moreover, Sabry et al. [94] 
discussed the microtubule-assembly inhibitory effects of stypoldione 
and 14-keto-stypodiol diacetate.

Carotenoids

Carotenoids from marine sources found to be structurally different 
from those found on land, algae are rich in carotenoids [100]. 

From the health benefits of carotenoids that they offer provitamin A 
activity. Those carotenoids can be converted enzymatically to produce 
retinal and ultimately retinol (vitamin A), which is essential for vision, 
maintenance of differentiated epithelia, and reproduction [101]. 
Numerous studies have shown that by consuming a relatively large 
quantity of carotenoid-rich food, risk of cancer at several tumor sites 
is decreased [102]. Also, carotenoids provide dermal photoprotection 
against UV light photooxidation [101]. Carotenoids showed anti-
inflammatory effects [103], hence was suggested to be used for 
cardiovascular diseases [104].

Carotenoids have been extensively studied and implicated as 
cancer preventive agents, seaweed-originated carotenoids, including 
fucoxanthin, neoxanthin, canthaxanthin, and peridinin tempt apoptosis 
in cancer cells [100,105,106]. Fucoxanthin has been observed to be a 
very effective inhibitor of cellular growth and promotes apoptosis in 
human cancer cell lines [107]. 

Mendes et al. [108] explained the biological activity of β-Carotene 
as cancer preventive component, where canthaxanthin showed 
immunoenhancement activity against cancer [109]. 

Gouveia and Empis [110] studied the carotene composition of 
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Dunaliella salina. D. salina is one of the richest sources of natural 
β-carotene (90% of the total carotene composition), where the other 10% 
is composed of other carotenoids such as α-carotene and xanthophylls 
like lutein, zeaxanthin, and cryptoxanthins [110]. These xanthophylls 
have extensive applications, specifically for pharmaceuticals, cosmetics, 
and animal feed production [111]. 

The green algae Chlorellu vulgaris has produced canthaxanthin and 
astaxanthin in fairly high yields [112]. Aliquots of the green alga Caldophora 
glomerata were analyzed and quantified, results revealed that lutein and 
zeaxanthin were the carotenoids present at the highest concentrations, with 
lower concentrations of astaxanthin and its esters [113].

Schubert, García-Mendoza and Pacheco-Ruiz [114] studied 
the carotenoid content of different red algae species illustrative for 
the numerous rhodophyte families. The carotenoid content was 
representative to the evolution of the Rhodophyta and of the other algal 
groups. The study indicated that it is difficult to understand the function 
of these pigments due to the high diversity as well as the inconsistency 
in the presence or absence of certain carotenoids [114]. 

The carotenoids of Euglenophyceae have been identified to 
embrace β-carotene, diatoxanthin, heteroxanthin, diadinoxanthin, 
and neoxanthin as was reviewed by Deli et al. [115]. A quantitative 
carotenoid analysis of a natural bloom of Euglena sanguinea, Ehrenberg 
showed that the highest carotenoid content was exemplified by 
diesters of (3S,3'S)-astaxanthin (75%) followed by diesters of (3S,3'R)-
adonixanthin (13%) and (3R, 3'R)-diatoxanthin (6%). Yet the rest 
was identified to be β-carotene monoesters of (3S)-adonirubin, 
19-monoester of (3R,3'R,6R)-loroxanthin, diadinoxanthin and traces 
of neoxanthin (trace) [116].

Bromophenols

A review presented by Lin and Liu [117] discussed the algae-
chemicals potential for anti-diabetic drugs; where marine algae are 
rich supplier of bromophenols; hundreds were isolated and studied. 
Bromophenols extracted from marine algae exhibit hyperglycemic 
effects by showing inhibition activity against protein tyrosine 
phosphatase 1B (PTP1B) when tested on rats [117]. The enzyme 
PTP1B dephosphorylates the insulin receptor and consequently down 
regulates insulin [118,119]. 

Bromophenols were isolated from the marine alga, Rhodomela 
confervoides and studied for their antibacterial activity by Xu et al. 

[120], extracted bromophenols could inhibit the growth of some 
bacteria. Various antibacterial potencies were observed by the different 
bromophenols studied on several gram-positive and gram-negative 
strains [52]. 

Phlorotannins 

As highly hydrophilic components, phlorotannins exist in 
abundance in marine brown algae and lower amounts accumulate 
in red algae [49]. Ecklonia cava; edible brown algae, was seen to have 
effective antioxidant activity [121], which was explained by the high 
phenolic content [121]. 

Brown seaweeds, including Sargassum tennerimum and Sargassum 
cervicorne, Sargassum graminifolium turn, Spireae thunbergii, and 
Laminaria japonica, are capable of inhibiting hyaluronidase, which 
is an enzyme used to speed dispersion and delivery and in case of 
histamines it increases their permeability [122]. The anti-allergic 
activity as other activities, such as anti-cancer, anti-diabetic and anti-
HIV, are exhibited by phlorotannins, hydrophilic compounds with wide 
range of molecular weights [122]. 

Zhang et al. [49] indicated various health beneficial activities of 
phlorotannins, including, anti-HIV [123], anti-diabetic [124], anti-
inflammatory [125], antihypertensive [126], radioprotective [127], anti-
proliferative, anti-Alzheimer’s disease [128], antimicrobial [129], and 
antimatrix metalloproteinase activities (anti-MMP) [130]. MMPs play 
an important role in physiologic degradation of extracellular matrix 
(ECM) [131], which could extent to pathologic conditions characterized 
by excessive degradation of ECM such as chronic inflammation, wrinkle 
formation, arthritis, osteoporosis, tumor invasion and metastasis [130]. 
Table 1 summarizes different phlorotannins extracted from algae 
species and their potential applications [49] (Table 1).

Value-Added Chemicals Extraction
The literature discussed numerous and extensive extraction 

methods used for both micro and macro algae samples. Those different 
methods were applied for various chemicals extraction. Some of the 
methods were applied for method evaluation, where others were 
studied for process optimization. 

Biomass extraction for natural products generation could be 
achieved with a single solvent (typically methanol) or a combination 
of solvents, especially when a large number of compounds with various 
polarities are pursued. Sequential extraction is also approached by 

Phlorotannin Species Health effect Reference

6,6'-Bieckol Ecklonia cava
Anti-HIV-1 [123]
Matrix metalloproteinase (MMP-2 and MMP-9) inhibitors [130-132]

6,6'-Bieckol Ishige okamurae Potential Acetylcholinesterase
(AChE) inhibitors that could be used for preventing Alzheimer’s disease [128]

Triphlorethol-A and ecol Ecklonia cava Antioxidant activity [133]

8,8´-bieckol and 8,4´´´-dieckol Ecklonia cava Inhibitory effect on
HIV-1 RT and protease [134]

Fucodiphloroethol G and phlorofucofuroeckol A Eckolonia cava Anti-histamine activity (anti-allergic) [135]
Dieckol Eckolonia cava Anti-diabetic [124]
Dieckol and phlorofucofuroeckol (PFF) Eckolonia cava memory-enhancing abilities [136]
Phlorofucofuroeckol-B Eisenia arborea Anti-allergic [125,137]
Eckol and 2-phloroeckol Ecklonia stolonifera Hepatoprotective constituents [138]
Eckol Ecklonia kurome Antiplasmin inhibitory effects, makes it potentially useful for thrombolytic activity [139]
Eckol, phlorofucofuroeckol A, dieckol and 8,8′-bieckol Ecklonia kurome Bactericidal effects [129]
Phlorofucofuroeckol A, dieckol, and eckol Ecklonia stolonifera Antihypertensive [126]

Table 1: Phlorotannins extracted from algae and their potential applications.

https://en.wikipedia.org/wiki/Acetylcholinesterase_inhibitor
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nonpolar and polar solvents to generate a series of samples [140]. Later 
in this review, different high-value chemicals extraction methods are 
presented, which are varied between simple and complex. Moreover, 
an overview of the conditions applied and the analysis approaches was 
stated. 

Traditional extraction procedures

Simple extraction procedures such as decoction, maceration [141], 
liquid-liquid extraction, infusion, percolation, digestion and hot 
continuous extraction (Soxhlet) were extensively studied for biomass 
processing [142].

Polysaccharide extraction: Soxhlet method was suggested by 
Alves et al. [143] to extract the water soluble ulvan polysaccharide. 
Dichloromethane and acetone were used in a Soxhlet extraction in order 
to remove interfering substances such as coloring material and lipids. 
The output of this extraction was processed with hot water extraction 
under continuous stirring, applying the following conditions: 0.5 L, 8 h 
at 75-85°C. Further treatment processes were applied: centrifugation, 
concentration (using a rotary evaporator), deproteinization, and 
decolourization. This method is effective for polysaccharide extraction, 
with a yield of ca. 10-20%. A flow diagram of the extraction procedure 
is shown in Figure 2 [143]. The polysaccharide product obtained was 
qualitatively analyzed using 1H NMR spectroscopy (Figure 2).

A study to extract polysaccharides from three types of algae: green, 
brown and red algae (i.e. Ulva pertusa, Laminaria japonica, Enteromorpha 
linza, Bryopsis plumose and Porphyra haitanensis) was conducted and 
described by Zhang et al. [144]. The antioxidant activity was also studied 
by examining superoxide and hydroxyl radical scavenging effects, and 
reducing power of the compound. The main target was to obtain high 
yields of the polysaccharides. The method was generally summarized 
as follows: 100 g of dry algae was crushed then autoclaved, with the 
following autoclaving conditions: 115-125°C for duration of 3 to 4 h. 
Dialysis was done twice for the resulted solution: one against tap water 
for 48 h and another against distilled water for another 48h. The solution 
was concentrated with vacuum. Precipitation of the polysaccharides was 
achieved by adding 75% (v/v) ethanol. To extract the polysaccharides, 
the precipitate should be washed by ethanol and freeze-dried [144]. The 
extraction conditions (time and temperature) varied as shown in Table 2.

Lipid extraction: Soxhlet method for lipids extraction from 
Calluna vulgaris (Chlorellaceae family) was studied by Araujo et al. 

[146]. Five grams of the biomass was used for the trial. Lipids extraction 
was done selectively by 110 mL acetone. Temperature applied was in the 
range of 120-180°C and the extraction was run for 8 consecutive hours. 
The extracted material was collected by solvent evaporation applying 
rotary evaporation. The resultant liquid fraction consisted of lipids and 
the solvent, which was filtered to keep the solution separated from the 
solid. 75 mL of KCl (0.88 w/v) solution was added to the sample and 
kept for 24 h in a separatory funnel, so that the oil phase separates from 
the aqueous phase. The oil phase (top phase) was transferred to a rotary 
evaporator and dried at 45°C under 200 mm Hg vacuum.

Fatty acid methyl esters were studied in P. cruentum samples, 
which were prepared by using 0.3 g of lyophilized material and 5 
mL of a mixture containing 1 acetylchloride: 19 methanol (v/v%). 
The material was esterified at 80°C for 1 h. After chilling, water and 
n-heptane were added to the mixture (1 ml and 2 ml respectively), 
stirred and centrifuged. The organic phase was taken, filtered and dried 
using anhydrous sodium sulphate. The effluent was analyzed using gas 
chromatography [23]. 

Phlorotannins extraction: Generally, there is no specific extraction 
procedure for extraction of all plant phenolics, since phenolics may 
also be attached to other plant components, including proteins and 
carbohydrates. Nonetheless, the solvent and solvent system used is very 
important to decide for the phenolics to be extracted. Furthermore, 
additional steps may be required to separate the targeted components 
[147].

In a study done by Kim et al. [130], Ecklonia cava extract was 
collected and washed to remove salt and sand residues attached to the 
surface before being stored at -20°C. The frozen samples were lyophilized 
and homogenized using a mill before undergoing extraction. 1.0 kg of 
freeze-dried E. cava was extracted with 95% ethanol in a ratio of 1:10 

  

Dried algae
•Soxhlet extraction

Algae residue (off-white)
•Static batch extraction (water as solvent)

Resultant solution (extract)
•Filtration (using cloth)
•Concentration to 10-20% its initial volume (using rotary 
evaporator)
•Deproteinization, deodoration and decoloration.

Resultant solution
•Precipitated solition is liophilized

Figure 2: Ulvan extraction from green algae [143].

Chemicals extracted/application Autoclave 
temperature (°C)

Autoclaving 
duration (h)

Sulfate 125 4
Total sugars 120 3
Uronic acid 115 3
Neutral sugars 115 3
Molecular weight identification 120 4

Table 2: Autoclaving conditions applied by Sathish and Sims [145] for each 
chemical extraction.
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(w:v) and evaporated under reduced pressure. The concentrated E. cava 
extract was freshly dissolved in Dimethyl sulfoxide before use.

In another study done by Xiao-jun, Xiao-jun et al. [148] 3.0 kg 
Sargassum kjellmanianum was extracted twice with 85% ethanol, the 
extract was first filtered with cheesecloth and then Buchner funnel 
filtration was applied, a deep brown liquid was obtained. After ethanol 
was removed by distillation under vacuum, the aqueous phase was 
cooled. The aqueous phase was then filtered through 0.45 µm Millipore 
membrane. The filtrate was extracted two times by ethyl acetate. After 
the organic phase was removed, vacuum was applied to concentrate the 
aqueous phase. The crude extract (weighed 30 g) was re-dissolved in 
distilled water and dialyzed against tap water for 2 days, then against 
distilled water for l day. The dialysate was dried by applying vaccum. The 
brown phlorotannin crude crystals obtained weighed 2.5 g.

Lee et al. [138] conducted extraction of phlorotannins based on 
the procedure applied by from Kim, Shin, Lee, Park, Park, Yoon, Kim, 
Choi, Jang and Byun [149]. 3.0 kg of the dried powder E. stolonifera 
was refluxed with 96% ethanol (EtOH, 3 x 9 L) for 3 consecutive 
hours. The concentrated extract was suspended in water, after which 
it was partitioned with n-hexane, ethyl acetate, n-butanol solvents in 
sequence. 

Pigments extraction: Liquid-liquid extraction is one of the 
extensively used methods, especially for organic material extraction. 
This method was demonstrated by Cha et al. [150] for carotenoids 
extraction from Chlorella ellipsoidea and Chlorella vulgaris by the 
following procedure: 100 mL ethanol solution containing 0.1% (w/v) 
butylated hydroxytoluene (BHT) was used as the extraction solvent 
for 1 g of freeze-dried sample. The extraction took place in dark, room 
temperature conditions. Shaking was done continuously for three 
consecutive hours, followed by filtration of the mixture. Potassium 
hydroxide was added for saponification (120 µL for 5 ml of the content). 
For carotenoids extraction, 3 mL of hexane was added, shaken and then 
diluted with 3 mL water. An amber separatory funnel was used for 
phase separation. The layer containing the carotenoid was set to dry by 
evaporation, with continuous nitrogen purging [150]. 

Vitamin isolation: The impact of the low temperature growth 
condition on the composition of tocopherol in Prophyridium cruentum 
was studied by Durmaz et al. [23]. The samples were harvested by 
flocculation and then were centrifuged. In order to analyze tocopherols, 
sonication and liquid-liquid extraction were consecutively applied 
according to Chen et al. [151] as mentioned by Durmaz et al. [23], 
where 2 mL ethanol and 10 mg ascorbic acid were added to 0.5 g of 
freeze-dried material. 3 mL of n-hexane was added and swirling was 
applied. The sample was sonicated using an ultrasound bath (for 
20 minutes). This step is necessary to disrupt the cell walls. 2 mL of 
distilled water was added and the mixture underwent stirring followed 
by centrifugation for 10 min. After the organic solvent filtration, drying 
was performed using anhydrous sodium sulphate. A second extraction 
was achieved by adding 1 mL and 0.5 mL of n-hexane individually. 

Advanced extraction procedures

Studies were generally focused on overcoming the drawbacks of 
traditional methods as they are time-consuming and use large amounts 
of organic solvents, which is considered environmentally hazardous. 
Traditional methods also showed low extraction yields [22]. Recently, 
new extraction methods were developed, which could be able to 
overcome those negative aspects of the traditional extraction methods 
[152,153]. 

Pressurized liquid extraction (PLE): Pressurized liquid 
extraction (PLE) under the trade name ASE (for accelerated solvent 
extraction) is one of the non-traditional methods, which is described 
as an environmentally-clean technology [153]. PLE showed promising 
extraction outcomes as demonstrated by Herrero et al. [152] to extract 
active chemicals from microalga Spirulina platens. Different conditions 
were applied as follows:

Different solvents: hexane (dielectric constant of 1.9), light 
petroleum (dielectric constant of 4.3), ethanol (dielectric constant of 
24.3) and water (dielectric constant of 78.5). 

Different temperatures: 115 and 170°C

Extraction time varied between 9 and 15 minutes. 

This work was conducted in order to study the effectiveness of 
Pressurized Liquid Extraction (PLE) by applying different extraction 
conditions, mentioned above. Herrero et al. [152] discussed a new 
Capillary Electrophoresis- Diode Array Detection (CE–DAD) method 
for extracts identification where the in vitro assay is used to describe 
the biological activity of those extracts. The author stated that this work 
shows a first-time confirmation for a possible application of PLE in-
vitro-assay Micellar Electrokinetic Chromatography - Diode Array 
Detection (MEKC–DAD) for analyzing antioxidants from natural 
sources.

High Pressure Liquid Extraction (HPLE) application was 
demonstrated by Plaza et al. [15] to screen bioactive materials from 
macro algae and microalgae. Advanced analytical methods (HPLC-
DAD or GC–MS) were used in this study for chemical characterization 
of extracts from Himanthalia elongata and Synechocystis sp. 

This study used different extraction conditions, as follows:

Different extraction solvents (i.e., hexane, ethanol, and water). 

Different extraction temperatures (50, 100, 150, and 200°C). 

The extraction time was fixed for all trials to be 20 minutes. 

Using the mentioned extraction techniques, added to it the 
proper analysis practices, biochemical characterization could be 
conducted such as analyses of antimicrobial and antioxidant activities. 
From the results of the different trials (applying different solvents or 
temperatures), water was found the most effective when used to extract 
non-polar to slightly polar compounds, and it showed good results 
in antioxidant extraction. Solvent polarity and extraction yield were 
directly proportional. Temperature showed a positive effect on the 
extraction yield as well. The results illustrated in Plaza et al. [15] for 
both Himanthalia elongata and Synechocystis sp showed the highest 
extractives yield for water extraction, then for ethanol and the lowest 
for hexane, and the results increased with temperature. 

The choice of the solvent is based on the need of extracting various 
chemicals with wide range of polarities [152]. Herrero et al. [152] and 
Plaza et al. [15] demonstrated similar results: water and ethanol have 
been found more effective in extractives removal than the nonpolar 
solvents, while applying the same extraction conditions. Water showed 
the most complex MEKC electropherogram among all other solvents 
used, while the antioxidant activity of the extract was the lowest. Light 
petroleum MEKC electropherogram though comparable to hexane’s 
MEKC electropherogram was slightly different in the half maximal 
effective concentration (EC50) values obtained from the 2, 2-diphenyl-
1-picrylhydrazyl (DPPH) in vitro experiments. Hexane showed lower 
EC50 indicating that the antioxidant activity of hexane extracts is 
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superior to the ones obtained by using light petroleum. Ethanol 
showed quantitative results lower than that of water but higher than 
what hexane and light petroleum showed. Ethanol extracts exhibited 
antioxidant activity higher than water extracts, but comparable to 
the light petroleum extracts. Longer extraction times and higher 
temperature showed better extraction yields [152]. 

Supercritical fluid extraction (SFE): Supercritical CO2 extraction 
has the ability to extract compounds with pharmaceutical significance 
[154,155]. This extraction method was studied by Mendes et al. [154] 
for value-added chemicals extraction from four species of microalgae 
(Botryococcus braunni, Chlorella vulgaris, Dunaliella salina and the 
cyanobacteria Arthrospira (Spirulina) maxima). Using supercritical 
CO2 as an extraction media resulted in uncontaminated and 
undamaged extract components [156]. Supercritical extraction can 
be used to extract lipids, which could be determined gravimetrically. 
Hydrocarbons extracted using hexane and supercritical CO2, were 
evaluated by GC [8,157,158].

A study was conducted by Nobre et al. [159] to assess the extraction 
of astaxanthin and its esters in addition to other carotenoids using 
supercritical CO2. The extraction was conducted on Haematococcus 
pluvialis and different extraction conditions were applied to optimize 
the process. The extraction conditions were as follows: pressure between 
200 and 300 bar, temperature between 40 and 60°C. The study evaluated 
grade of crushing and the effect of using a co-solvent (ethanol). 

UV-Visible spectra (between 380 and 700 nm) were run to quantify 
the total carotenoid extracts. Carotenoid extracts attained by SFE 
were filtered and analyzed using HPLC [159]. Carotenoid extraction 
showed a yield of 100% by applying acetone L-L extraction, and using 
SFE extraction by supercritical CO2, without excessive grinding and 
without using a co-solvent (ethanol) gave a yield of 46.0%. Adding 10 
Ethanol: 90 CO2 (v/v%) increased the yield of carotenoid extraction 
by 25.0% to achieve 58.7%. A much higher yield could be attained by 
further crushing of the biomass, which disrupts the cells and makes 
the carotenoids exposed and easier to extract. Having SFE extraction 
adjusted by adding a co-solvent and having a more crushed biomass 
can give a yield of 91.8% [159]. This paper also demonstrates a positive 
influence of both temperature and pressure on carotenoids extraction 
using SFE, where the pressure showed higher influence on the 
extraction yield than temperature; by keeping the temperature constant 
and increasing the pressure, an apparent increase in the extraction yield 
was obtained, on the other hand, by fixing the pressure and increasing 
the temperature, a slight extraction-yield-increase was obtained [159]. 

A study was conducted by Mendes et al. [154] discussing the 
extraction efficiency of antioxidants and antimicrobial components 
from Spirulina platensis, applying supercritical fluid extraction (SFE) 
and using CO2 and the mixture of CO2 and ethanol, similar to Nobre et 
al. [159]. Different conditions were applied to optimize the extraction 
and fractionation methods used. 

The extraction using CO2 with 10% co-solvent (ethanol) gave a 
higher yield (1.9%) where the extract obtained using CO2 without using 
10% ethanol was only (0.23%). Adding the co-solvent to the extraction 
agent also resulted in higher antioxidant activity. Supercritical CO2 has 
a low polarity which caused an inadequate interaction between CO2 and 
the matrix. Therefore adding a co-solvent can overcome this drawback 
and accordingly the extraction efficiency could be increased [154]. 

When pure CO2 was used as the extraction agent (no co-solvent 
addition), antioxidant activity of the extracts increased with pressure. 
The influence of temperature at low pressure had a negative impact 

on the antioxidant activity, whereas high pressure affected the 
temperature’s activity positively. The optimum extraction conditions 
were found to be 360 bar and 74°C for the mentioned extraction agent. 
The optimum extraction conditions were confirmed to be at 275 bars 
and 57°C. Moreover, pressure of 220 bar seemed to be optimal to extract 
substances with antimicrobial activity [154] (Table 3).

Analysis Technique
Overview

Throughout the conducted studies, different analytical techniques 
were applied as illustrated in Table 4. Each analytical technique had 
one or multiple components to analyze, since extracts are mixed with 
impurities and it is very important to separate them. 

High-performance liquid chromatography (HPLC) and gas 
chromatography (GC) are very popular methods used for the analysis 
of algal extractives [152]. HPLC is the most sensitive and extensively 
used method, which can separate a wide range of compounds. (LC-
MS) and (GC-MS) have been applied to perform a pharmaceutical 
grade analysis [162]. Reversed-Phase High-Performance Liquid 
Chromatography (RP-HPLC) was mentioned by Herrero et al. [152] as 
one of widely applied analysis methods, however this technique fails to 
separate highly polar compounds from the less polar ones [154]. 

Capillary electrophoresis using diode array detection (CE-DAD) 
is considered a good substitute of the RP-HPLC for fast SFE extracts 
characterization, which shows shorter application time, higher 
efficiency and selectivity when compared to the HPLC [152]. 

Complete structure evaluation was performed by many researchers 
to study bioactive natural products, and methods used were: 1D, 2D 
NMR, MS/MS, HPLC and chiral GC-MS analysis [163-166].

According to what Bernal et al. [167] explained regarding analysis 
procedures through a literature review of studies between 2005 and 
2010, algae fatty acids, as methyl or ethyl esters, were analyzed by LC-
MS and GC-FID [8,167]. For lipid detection, gas chromatography (GC) 
with various detection techniques such as ECD, FID and MS and also 
HPLC joined to one of the following detection systems: PDA, UV, MS 
and MS/MS were recommended. Nuclear magnetic resonance (NMR) 
and mass spectrometry (MS) were also among the suggested analysis 
techniques. 

For terpenes, GC-MS, HPLC-UV-MS or NMR were found to be 
applied, nevertheless NMR is preferred for structure analysis. 

Bernal et al. [167] have mentioned different analytical techniques 
for identification and/or quantification of carotenoids, such as HPLC 
that equipped with DAD or UV detectors. Liquid chromatography 
coupled with PDA and MS detectors showed high sensitivity for 
carotenoids and carotenoid esters detection. For antioxidant and anti-
cancer carotenoids analysis, such as β-carotene, HPLC-UV/Vis or DAD 
was suggested to be used. 

In most cases, especially for the characterizing composition of 
nutraceuticals, it is necessary to evaluate the suitability of the analytical 
techniques. The following sections review the popular analysis 
techniques, especially for marine-species extract (i.e., macroalgae and 
microalgae) (Table 4). 

Analysis of polysaccharides

Zhang et al. [144] identified neutral sugars content of different algae 
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Extraction method Bio-mass Chemicals used Temp. (°C)/ Pressure Time min.) Chemicals 
extracted Analytical Method References

Soxhlet extraction 
followed by hot 

water extraction;
Hot water 

extractions

Green Algae

Dichloromethane 
and acetone for 

Soxhlet extraction 
and water for hot 
water extraction

75-85°C during hot 
water extraction

480 (hot 
water 

extraction)

Ulvan 
polysaccharide

Elemental analysis (% C, H, N 
and S content)  by combustion

[143]

Proteins were measured as 
nitrogen content through Kjedhal 

analysis.
chemical structure of the 

extracted polysaccharide by IR 
and 1H NMR

Soxhlet extraction Chlorella vulgaris Acetone 120-180°C 480 Lipids Lipids were separated applying 
L-L separation and then drying [146]

Liquid-Liquid 
Extraction

Chlorella ellipsoidea 
and Chlorella vulgaris

Ethanol solution 
containing BHT. 

KOH was added in 
the procedure, refer 

to the text.

Room temperature 
and dark conditions ----- Carotenoids HPLC and carotenoids were 

identified by HPLC-ESI-MS [150]

Sonication in an 
ultrasound.

The output was re-
extracted applying 

L-L extraction.

Porphyridium 
cruentum

Ethanol, ascorbic 
acid , hexane, and 

distilled water
__________ ____ Tocopherols HPLC [23]

Esterification 
followed by Water 
and n-heptane L-L 

extraction.

Porphyridium 
cruentum

Acetylchloride, 
methanol, 

n-heptane and 
water

Esterification at 80°C 60 min for 
esterification

Fatty acid 
methyl esters Gas chromatography [23]

Pressurized liquid 
extraction (PLE) Himanthalia 

elongate(macroalgae)
and Synechocystis sp. 

(microalgae)

Hexane
Ethanol
Water

Three different temp.:
50, 100, 150, and 

200°C 20

Various for 
the aim of 
characteri-

zation

GC–MS and HPLC-DAD [15]

Pressurized Liquid 
Extraction (PLE)

Microalgae samples 
(Spirulina platensis)

Hexane, light 
petroleum, ethanol, 

and water

Two different 
extraction 

temperatures (115 
and 170 °C

9 and 15 Antioxidant 
activity

Reversed phase high 
performance liquid 
chromatography

[152]
Capillary electrophoresis

with diode array detection (CE–
DAD)

Supercritical fluid 
extraction

(SFE)

Supercritical fluid 
extraction

(SFE)

Supercritical fluid 
extraction

(SFE)

Dunaliella salina Acetone

39.95 and 59.95 and 
pressures up to

35.0 MPa

----

Β-carotene LC-UV/vis

[154] as in 
[21,160]

Chlorella vulgaris Supercritical CO2 Carotenoids Spectrophotometry

Chlorella vulgaris Supercritical CO2
Astaxanthin and 
Canthaxanthin HPLC

Lipids Supercritical CO2 Lipids Gravimetric

Botryococcus braunii Hexane and 
supercritical CO2

Hydrocarbons GC

Haematococcus 
pluvialis (microalgae) Ethanol

(40 and 60),
pressure (200 and 

300 bar), ----- Β-carotene LC-UV/vis

[159] as 
mentioned in 

[160]

Spirulina platensis
(microalgae)

Ethanol and CO2

275 bar and 57°C for 
antioxidant activity 
and 220 bar and 
27  for optimum 

antibacterial activity

75 

Antioxidant 
activities

The β-carotene bleaching 
method and DPPH free radical-
scavenging assay were used to 
determine the optimal extraction 

conditions for antioxidant 
compounds

[161]
Antimicrobial

activity

Broth microdilution method was 
used

for determination of the minimum
inhibitory concentration

Pure CO2

360 bar and 74°C for 
antioxidant activity. 
At 361 bar, 55°C for  
highest antimicrobial 

activity

Lipid 
composition 

analysis

Gas chromatography, coupled to 
a flame ionization detector

(GC-FID)
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Pretreatment by
autoclaving in water 
Successive filtration, 

concentration and 
precipitation (with 
purification) of the 
polysaccharides. 

Ulva pertusa

Water

125°C 240 Sulfate content Barium chloride–gelatin
method

[144]

Laminaria japonica 120°C 180 Total sugar 
content phenol–sulfuric acid method

Enteromorpha linza 115°C 180 Uronic acid A modified carbazole
method using d-glucuronic acid 

as standard

Bryopsis plumosa 115°C 180 Neutral sugar 
analysis

High performance
liquid chromatography (HPLC)

Porphyra haitanensis 120°C 240 Molecular 
weight HP-GPC

Table 3: Extraction methods and conditions review.

Analytical technique Solvent
(mobile phase) Column Biomass Active compound Reference

HPLC, UV-Vis detector A mixture of acetonitrile and methanol (90/10 v/v) Reversed-phase column, 
250 mm long

Dunaliella salina β-carotenoids
[154]

Chlorella vulgaris Astaxanthin and 
canthaxanthin

HPLC-DAD

Mixture of acetone and water (84% acetone and 
16% water) for the first 21 min, followed by a 4 min 
linear gradient to 97% acetone and 3% water for 

the remainder of the 50 min run.

C30 analytical column (5 
μm, 250 × 4.6 mm i.d.) Phormidium Carotenoids [7]

HPLC equipped with 
an automatic injector 

and a fluorescent 
detector

Mixture of n-hexane and isopropanol
(99.3:0.7; (v:v))

Lichrosorb Si 60-
5 (250 × 3 mm i.d.) 
Chrompack column 

protected by a silica pre-
column S2-SS (10 × 2 mm 

i.d).

Porphyridium cruentum Tocopherols [23]

HPLC

Solvent A: 0.4% triethylamine in 20 mM ammonium 
acetate buffer solution (pH 6.30 by acetic acid)–

acetonitrile
(9:1). solvent B, 0.4% triethylamine in 20 mM 

ammonium acetate buffer solution (pH 6.30 with 
acetic acid)–acetonitrile (4:6); gradient, 10–14% 

in 9 min, 14–64% from 9 to 30 min, 64%. The 
following 5 min at 1 mL/min.

YMC-Pack ODS-AQ (250 
mm × 4.6 mm, 5 m)

1.Brown alga Laminaria 
japonica,

2. Red alga Porphyra 
haitanensis and

3.  Green algae 3.1. 
Ulva pertusa, 3.2. 

Enteromorpha linza
3.3. Bryopsis

plumose

Neutral sugar analysis [144]

HPLC with diode array 
detector Acetonitrile:methanol (75:25)

YMC carotenoid column (3 
µm particle size, 250 mm × 

4.6 mm)

Chlorella ellipsoidea 
and Chlorella vulgaris Carotenoids [150]

HPLC-ESI-MS

Acetonitrile:
methanol (0.1 M ammonium 

formate):dichloromethane (71:22:
7, (v/v)

SunFire C18 column (150 
mm × 4.6 mm × 3.5 μm

Chlorella ellipsoidea 
and Chlorella vulgaris Carotenoids [150]

GC-MS Helium as the carrier gas (7 psi)

The column
used was a 30 m × 0.25 

mm i.d. fused silica capillary 
column coated

with a 0.25 μm layer of SE-
54 (HP-5MS, Agilent)

Phormidium Volatile compounds [7]

Gas chromatograph 
(Varian Star 3400 Cx

equipped with an 
auto-sampler and fitted 
with a flame ionization 

detector at 250°C.

Polyethylene
glycol

Capillary column 30 m in 
length, 0.25 mm in

diameter, and with 0.25-μm 
film thickness (DB-WAX,

J&W Scientific, Folsom, CA, 
USA)

Porphyridium cruentum Fatty acids [23]

Gas Chromatography ____ BTR Carbowax column 30 
m, (0.25 mm inner diameter) Spirulina platensis Ethyl esters of the 

various fatty acids [161]

Chromatography
unit equipped with a 
mass spectrometry 

detector

Helium

DBWax polyethylene glycol 
capillary column (30 m _ 

0.25 mm id
and 0.25 lm film thickness)

Chlorococcum sp.

Lipid yield and  fatty 
acid  composition of the 

post-methylated lipid 
extract

[168]

TLC Petroleum ether:acetone:diethylamine mixture in 
the proportion 10:4:1 (v/v)

(20 cm X 20 cm) plates 
covered with silica gel Phormidium

To verify the chemical 
composition of 

the extracts and 
to determine if the 
differences among 

solvents and 
temperatures

were qualitative or only 
quantitative

[7]
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species by the HPLC method, which analyzed sugar derivatives. The 
process was run at 25°C. Two different solvents with different gradients 
were used: 0.4% triethylamine in 20 mM ammonium acetate buffer 
solution (pH 6.30 by acetic acid)–acetonitrile (9:1) and solvent B, 0.4% 
triethylamine in 20 mM ammonium acetate buffer solution (pH 6.30 
with acetic acid)–acetonitrile (4:6) at a flow rate of 1.0 mL/min [144]. 
In another study, HPLC system with a ZORBAX Eclipse XDB-C18 
analytical column was used for rebaudioside A and stevioside content 
analysis. The column was eluted with acetonitrile-water 70:30, at a 
flow rate of 1.0 mL/min, and an ambient temperature of 25°C. UV 
absorption was used for detection at 210 nm, column pressure of 80 
atm was applied [169]. 

IR identification technique was applied by Alves et al. [143] to 
identify ulvan chemical components. An IR Prestige-21 apparatus was 
used for disc formed sample (mixing the powder sample with KBr and 
then pressing it into a disc). 

1H NMR spectroscopy has been suggested as a good analytical tool 
for studying algal polysaccharides. However, this technique was only 
suggested for chemical identification and not quantification, as there 
are possible structural irregularities, which could give misleading and 
complex signals. 

The advantage of this technique over others, like chromatography, 
is its simple calibration and application besides the faster optimization 
of the experiment practice [143]. 

Ulvan thermal properties were also analyzed by Alves et al. 
[143] using thermogravimetric analysis (TGA), differential scanning 
calorimetry (DSC) and dynamic mechanical analysis (DMA). 
Combustion was applied throughout this study for elemental analysis 
of the major components and Carlo Erba CHNS-O EA 1108 apparatus 
was used for this purpose.

Analysis of proteins

Chiral HPLC method, as well as 2D NMR spectral analysis were 
reviewed by Tan [163] based on the study of Han et al. [170] for 
complete lipopeptides structural determination on extracted Wewak 
peptins. 

Total protein content is usually measured by a standard Kjeldahl 
method [143,171].

Analysis of lipids and fatty acids

GC–MS analysis with a split/splitless injector coupled to a 
quadrupole mass spectrometer was used to identify the volatile material 
and fatty acids extracted by PLE method [15]. 

Hydrocarbons and fatty acids from supercritical extract were 
analyzed by Mendes et al. [154] using gas chromatography. The fatty 
acid analyses were achieved in a gas chromatograph joined with flame 
ionization (FID) detector.

Analyses of the fatty acid methyl ester content in the post-
methylated lipids were also performed using gas chromatography 
connected with a mass spectrometry detector [8,154,168]. 

For lipid composition analysis, Mendiola et al. [161] and Sathish 
and Sims [145] used gas chromatography, joined with a flame 
ionization detector (GC-FID). Sample solution was injected into a gas 
chromatograph with a 30 m column with inner diameter of 0.25 mm. 
Temperature applied started at 100°C then increased to 180°C and 
afterwards to 220°C with heating rates of 20°C/min and 15°C/min, 
respectively. 

Long-chain (C35-C40) alkenones and their derivatives have been 
identified in Chrysotila lamellose using gas chromatography–electron 
impact mass spectrometry (GC–EIMS) [72].

TLC Petroleum ether:acetone (75:25) (10 cm × 20 cm) plates 
covered with silica gel Spirulina platensis

To investigate inquire 
into the types of 

compounds
responsible for the 
antioxidant activity

[161]

Combustion ------ ----- Green algae Elemental analysis

[143]

Kjedhal
Analysis

----- ----- Green algae Protein measurement

IR and 1H NMR
----- ----- Green algae

Chemical structure 
of the extracted 
polysaccharide

Spectrophotometry:
(Neutralization

of free radicals of 
DPPH by the extract 

antioxidants)

Methanol ----- Microalgae samples 
(Spirulina platensis) Antioxidants activity [152]

Micellar electrokinetic 
chromatography with 
diode array detection

(MEKC–DAD)

50 mM sodium tetraborate, 100 mM SDS at pH 8.8

Fused silica capillary with 75 
_m i.d., 37 cm total length 
and 30 cm length to the 

detector

Microalgae samples 
(Spirulina platensis)

To provide a preliminary 
analysis on the 

composition of the 
extracts

[152]

Barium chloride–
gelatin
Method

-------- -------
1. Brown alga Laminaria 

japonica,
2. Red alga Porphyra 

haitanensis and
3.  Green algae 3.1. 
Ulva pertusa, 3.2. 

Enteromorpha linza
3.3. Bryopsis

plumose

Sulfate content

[144]
Phenol–sulfuric acid 

method ----------- ---------- Total sugar content

Table 4: Review of analytical techniques used for algae and microalgae extracts.
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HPLC can also be applied to analyze lipids, e.g., Jones et al. [8] 
used normal-phase HPLC coupled to an evaporative light scattering 
detector (ELSD) and MS for crude lipid-extracts analysis. Furthermore, 
Guella et al. [172] reported that the structural interpretation of some 
galactolipids produced by Glenodinium sanguineum and Chaetoceros 
has been obtained using high performance liquid chromatography–
electrospray ionization ion trap mass spectrometry HPLC/ESI-ITMS.

To determine the position of double bonds in minor fatty acids 
(below 1% of total fatty acids) in a golden alga, Schizochytrium spp., 
acetonitrile chemical ionization tandem MS has been efficiently applied 
[173].

For a qualitative identification of the lipids in brown algae, 
Obluchinskaya [171] applied thin layer chromatography method, with 
50:50 benzene–chloroform as the solvent. The spots were urbanized by 
5% phosphomolybdic acid solution in methanol.

Lipids from supercritical extracts could be examined gravimetrically 
as demonstrated by Mendes et al. [154], Araujo et al. [146] and Cha et 
al. [150]. 

Analysis of pigments (carotenoids)

HPLC was used by Mendes et al. [154] to analyze astaxanthin and 
canthaxanthin. The same study used HPLC for β-carotene. A liquid 
chromatograph Perkin-Elmer, Series 10, with an UV-Vis detector, 
coupled to a Perkin-Elmer LCI-100 integrating unit, and a reversed 
phase column, 250 mm long, Vydac 201 TP54 was used. The eluent was 
a mixture of acetonitrile and methanol (90:10, v/v) at a flow rate of 1 
ml/min [154]. 

For Liquid-Liquid pigment-containing extracts, HPLC coupled 
with diode array detector was utilized as an analytical method. Cha et 
al. [150] demonstrated the sample pre-treatment before being analysed; 
methanol was used for dissolving the residue, while fat-soluble 
impurities were extracted with hexane. Sample of 20 µL was injected 
into YMC carotenoid column (3 µm particle size, 250 mm × 4.6 mm) 
with an acetonitrile-methanol (75:25) mobile phase under flow rate of 
1.0 mL/min. Cha et al. [150] also used HPLC-ESI-MS for carotenoids 
identification. Separation was done using a C18 column (150 mm × 4.6 
mm × 3.5 μm) and using isocratic system, with acetonitrile:methanol 
(or 0.1 M ammonium formate):dichloromethane (71:22:7, v/v)) as the 
eluent.

The use of Diode Array Detection (DAD) in the HPLC system 
has proved its powerful application in compounds identification. A 
challenge is presented in the simultaneous extraction and analysis of 
dissimilar compounds [152]. 

HPLC-DAD analysis was done by dissolving the dry extract in 
the compatible solvents prior to the HPLC analysis. The extract was 
analyzed by the HPLC (Agilent 1100 Liquid Chromatograph equipped 
with a DAD). The column used was a C18 column (150 mm × 3.9 mm). 
A mixture of two solvents; A: (methanol/ammonium acetate 0.1N; 7:3) 
and B: (methanol) was used as the mobile phase. The identification 
was performed by two means: either using a standard or using UV–vis 
spectral characteristics and assessment based on the literature [15]. 

HPLC-DAD analysis was applied by Rodríguez-Meizoso et al. 
[7] for carotenoid compounds identification. The mobile phase was 
a mixture of acetone and water in ratios presented in Figure 3 and at 
a flow rate of 1 mL/min. Detection using a diode array system was 
achieved at a wavelength of 480 nm (Figure 3).

Analysis of polyphenols (phlorotannins)

Kim et al. [130] determined the total content of phlorotannins 
using spectrophotometric methods as was described by Waterman and 
Mole [174], by applying a modified version of Folin-Ciocalteu method. 
Phloroglucinol was used as the standard, where samples were diluted 
while considering the range of the spectrophotometer. A 0.1-ml aliquot 
of the diluted sample was mixed with 1.0 ml of 1 N Folin-Ciocalteu 
reagent. 2.0 ml of 20% Na2CO3 was added, after which, the mixture was 
allowed to stand for 3 minutes. Samples were kept in the dark for 45min 
at room temperature before being centrifuged at 1600 × g for 8 min. 
Optical density (OD) of the supernatant was measured at 730 nm using 
a GENios® microplate reader (Tecan Austria GmbH, Austria). Total 
phlorotannin content is calculated using the standard graph plotted and 
expressed as a percentage.

In another study, the IR spectrum and fluorescence spectrum of 
phlorotannins were verified by PHP Fourier Infrared Spectroscopy, and 
Hitachi 850 Flourescent Spectroscopy respectively [148].

Future Perspectives
Future utilization of algae will be decisively influenced by the effort 

put into and the results algae and seaweed research [175]. Mainly, 
studies are looking into the scalability and commercial production of 
algae-derived products. 

One of the major commercial markets for algal products is the food 
industry, including nutraceuticals products [176]. The commercial 
applications are dominated by four strains: Aphanizomenon flos-aquae, 
Arthrospira, Chlorella and D. salina [38]. Alagae-based nutraceutical 
products include but not restricted to pure powder, tablets, chips, 
pasta and liquid extract [38]. Moreover, algae are used in commercial 
aquaculture operations for the production of fish feed. The algae supply 
important nutrients such as polyunsaturated fatty acids (PUFAs), 
carotenoids, and proteins, those are needed for fish [79,177]. Species 
with large quantities of PUFAs are of high interest, such as Cryptomonas 
sp. and Nannochloropsis sp. [176,178]. 

Algae represent a single photosynthetic production system that is 
capable of extremely versatile biofuels applications. It was indicated by 
Jones and Mayfield [179] that algae can be used as a biomass to replace 
oil seeds plants (in production of biodiesel), corn and sugar cane (in 
production of bioethanol), lignocellulosic biomass (in production of 
bioethanol and biogas) and organic waste (in production of biogas and 
biohydrogen). 

The concept of using microalgae as renewable source of lipid-rich 
feedstock for biofuels has been explored over years due to the substantial 
amounts of triacylglycerols (TAG); yet, a scalable, commercially 
viable system has yet to emerge [180]. In a study done by Harun et 
al. [181] showed that the green algae Chlorococum sp. produces 60% 

The remainder of the 50 minutes

97% acetone 3% water

First 21 minutes

84% acetone 16% water

Figure 3: The mobile phase composition used HPLC-DAD carotenoid 
analysis [15].
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higher ethanol concentrations for samples that are pre-extracted for 
lipids versus those that remain as dried intact cells. This indicates that 
microalgae can be used as a biomass for the production of different 
fuels to increase their overall economic value [179].

Producing biofuels from algae is challenging, mainly due to the 
high cost associated with the infrastructure and the energy needed 
for growing and harvesting algae [182]. Metabolic and genetic 
engineering of biofuel producing organisms will likely play a critical 
role in strain development to optimize the biofuel producing strains, 
together with creating designer triacylglycerides through lipid chain 
length manipulation [183]. Despite the high cost associated with viable 
production of biofuels from algae, algae still represent one of the best 
possibilities available as a source of bioenergy. Optimum utilizations of 
algae, by considering a biorefinery concept that is economically feasible 
and environmentally sustainable are subjects of process optimization 
and system efficiency. Hence, minimizing the generated waste and 
using every component of the algal biomass will help in producing 
viable biofuels from algae. Accordingly, we focused in this review on 
the added-value chemicals, which will generate a great profit to algae-
based bio refinery along with the need of finding a good source of such 
valuable components. 

Conclusion
Algae are photosynthetic diverse organisms, which can survive 

under harsh conditions and accordingly produce various high-value 
metabolites. They are estimated to represent a huge number of species 
ranging between 30,000 and more than 1 million [184]. Based on 
the great potential of chemicals production from algae, researchers 
conducted studies to characterize different algae strains and to study 
chemical extraction feasibility. Different extraction and analysis studies 
were carried out. The extraction methods applied varied between 
simple and sophisticated ones. It was observed that simple (traditional) 
extraction methods are time consuming, and environmentally 
hazardous, besides the inefficient downstream treatment. Therefore 
advanced methods such as PLE and SFE were studied and effective 
extraction was observed in these trials. SFE extraction is valuable, 
as the diffusivity and the viscosity values are between those of the 
gases and liquids. Faster and more efficient extraction was obtained 
by supercritical fluid due to its deeper penetration into the structure 
of biomass. Since the great discovery of supercritical extraction, SFE 
is now applied as a very efficient extraction method in several areas 
[21,154]. Nevertheless, high operation cost, especially on large scales, 
influenced this method negatively [168].

Development of advanced analytical techniques is essential 
in algae research, in order to characterize, identify and quantify 
natural components in the studied species. Among different analysis 
technologies discussed, such as HPLC, GC, TLC, MS, NMR, some 
methods used two or more combined techniques for identification, 
such as HPLC-MS, GC-MS and HPLC DAD for more detail and 
accurate identification and quantification of the targeted compounds.
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