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Introduction
The analysis of high-dimensional data, where the number 

of predictors exceeds the sample size, poses many challenges for 
statisticians and calls for new statistical methodologies in order to 
select relevant variables in multivariate data, feature selection is used 
to overcome the curse of dimensionality by removing non-essential 
variables to achieve a model with predictive accuracy. Consequently, 
the choice of a variable selection procedure becomes very important 
for enhancing the ability to generate reproducible findings and 
generalizable conclusions. In high-dimensional data it is desirable to 
have parsimonious or sparse representations of prediction models. 
Since highly complex models are penalized by increased total error, 
regularization helps reduce complexity in classification by minimizing 
over-fitting of the training data. We evaluated this by maximizing 
goodness-of-fit and simultaneously minimizing the number of 
variables selected. 

In this study, we evaluated different models by randomly selecting 
and withholding the training data to be used later for testing. The area 
under the receiver characteristic operating curve (ROC) was used as a 
measure for comparing prediction accuracy based on sensitivity and 
specificity for both training and test data. In this study discriminative 
features were identified that associated with H. pylori peptic ulcer 
disease. We found that various free amino acid measurements could 
be associated with disease outcome. However, many of these variables 
are highly correlated and which of the factors will result in the most 

stable classifier is unknown. Here we sought to extend this work by 
comparing the effects of various feature reduction methods.

Methods 
Study design

Sera were obtained from patients with documented H. Pylori 
infection undergoing an endoscopic exam for routine medical 
management. Thirty subjects with proven duodenal ulcer were 
matched using sera collected during the same time period. Samples 
were collected after receiving written informed consent as approved by 
the Institutional Review Board of Baylor College of Medicine, Houston, 
TX and the study was conducted in accordance with the guidelines of 
the Helsinki Declaration.

Abstract
Background: The development of accurate classification models depends upon the methods used to identify 

the most relevant variables. The aim of this article is to evaluate variable selection methods to identify important 
variables in predicting a binary response using nonlinear statistical models. Our goals in model selection include 
producing non-overfitting stable models that are interpretable, that generate accurate predictions and have minimum 
bias. This work was motivated by data on clinical and laboratory features of Helicobacter pylori infections obtained 
from 60 individuals enrolled in a prospective observational study. 

Results: We carried out a comprehensive performance comparison of several nonlinear classification models 
over the H. pylori data set. We compared variable selection results by Multivariate Adaptive Regression Splines 
(MARS), Logistic Regression with regularization, Generalized Additive Models (GAMs) and Bayesian Variable 
Selection in GAMs. We found that the MARS model approach has the highest predictive power because the 
nonlinearity assumptions of candidate predictors are strongly satisfied, a finding demonstrated via deviance chi-
square testing procedures in GAMs. 

Conclusions: Our results suggest that the physiological free amino acids citrulline, histidine, lysine and arginine 
are the major features for predicting H. pylori peptic ulcer disease on the basis of amino acid profiling.
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Amino acid analysis

Serum was precipitated by mixing equal volumes of 7.5% 
sulfosalicylic acid (SSA) in 0.02N hydrochloric acid (HCl). Aminoelthyl 
cysteine (AEC) was added as the internal standard in each sample. The 
precipitate was centrifuged for 15 min at 10,000 × g, and supernatant 
containing physiological amino acids was saved. The supernatant was 
quantified for amino acids using a Hitachi L8800 Amino Acid Analyzer. 
Data was reported as nmol amino acid per 10 µl plasma. Samples were 
run in duplicate and concentrations varied less than 10% between 
duplicates. For measurements below the limits of detection, samples 
were imputed with 1/10 the lower limit of detection for the assay.

Feature reduction-modeling strategies

In this paper we use the term feature selection methods to refer 
to identifying the subset of differentially-expressed predictors that 
are useful and relevant in distinguishing different classes of samples. 
Similarly, model selection is a process of seeking the model from a set 
of candidate models that are the best balance between model fit and 
complexity. Our research goal is to evaluate the various model fittings 
of increasing data complexity and to find the best models to identify the 
underlying model by both AIC, BIC, and cross-validation.

Feature reduction using Significance Analysis of Microarray 
(SAM)

SAM determines significance by using more robust test statistics 
and permutations to estimate false discovery rate instead of the 
conventional “t” distribution level of significance [1]. Efron et al. [2] 
developed an empirical bayesian approach using non-informative 
priors and deriving the posterior probability difference for each of 
the predictors without having to run t-tests or Wilcoxon tests to 
identify those that were differentially expressed. In some cases, a 
heuristic approach was investigated for feature selection by integrating 
correlation, histogram, and other statistical measures. We used the 
information criterion on the modeling.

Akaike information criterion (AIC) is given by

AIC(M)=−2 lnL(M) + 2(p(M) + 1), (1)

where L(M) is the maximum likelihood function of the parameters in 
the model M, and p is the number of covariates estimated in the model 
[3].

Bayesian information criterion (BIC) is given by

BIC(M) = -2 lnL(M) + ln(n) × (p(M) + 1), (2)

where n is the sample size, M and p are defined as those variables 
shown in Equation 1 [4,5]. Specifically, Stone [6] showed that the AIC 
and leave-one out cross validation are asymptotically equivalent.

Logistic regression with regularization

Logistic modeling has a binary response yi ∈ {0, 1}, and assumes 
that

Pr(y = 1|x) = 1/(1 + exp(−xT β),                   (3)

Regularized and shrinkage estimation methods such as a LASSO 
(least absolute shrinkage and selection operator) estimator helps 
address variable selection and multicollinearity. For a binary response 
variable and the logistic regression models, the LASSO estimator 
is estimated by penalizing the negative log-likelihood with the L1-
norm. The penalty term is chosen by a cross-validation technique to 

evaluate the out-of-sample negative log-likelihood [7]. The EN (Elastic 
Net) penalty is designed to simultaneously select strongly correlated 
variables that combine the L1 and L2 penalizing terms in the model [8]. 

The coefficient vector β that minimizes the penalized log-likelihood 
is

β̂  = argminβ∈Rp −∑(yi log pi + (1 − yi) log(1 − pi)) + Penalty(β),           (4)

where pi = Pr(y = 1|x). 

Fan and Li (2001) proposed the Smoothly Clipped Absolute 
Deviation (SCAD) penalty, which compromises between L1 and L2 , and 
the L0 selection methods. The SCAD penalty deletes small coefficients 
and keeps large coefficients unshrunken, but sacrifices continuity and 
stability. The SCAD penalty can provide a smaller bias in coefficient 
estimation than LASSO because it is bounded as a function of β. The 
SCAD penalized estimator also has an oracle property [9]. Sparse 
regression using penalization is one of the most popular tools for 
analyzing high dimensional data.

Generalized Additive Models (GAMs) for classification 
problems

GAMs provide a general frame work moving beyond linearity by 
allowing nonlinear functions of each of the variables, while maintaining 
the additive assumption [10]. Logistic regression GAM modeling has a 
binary response yi ∈ {0, 1}, and assumes

Pr(y = 1|x) = 1/(1 + exp(− [β0+f1(x1)+f2(x2)+ ... +fp(xp)]),              (5)

GAM modeling allowed us to fit a nonlinear function to each 
predictor, so that we could automatically model the nonlinear 
relationship that standard linear regression will miss. The nonlinear fits 
can potentially make accurate predictions for the outcome. 

Multivariate Adaptive Regression Splines (MARS)

The MARS method of Friedman [11] is a nonparametric regression 
method that estimates complex nonlinear relationship by a series of 
truncated spline functions of the predictors [12]. The basis functions 
are combined in the MARS model as a weighted sum of

p

i 0 k k
k 1

y a a B xˆ ( ),
=

= +∑   (6) 

where ŷ  is the response described by the model, a0 the coefficient of
the constant basis function (intercept), p the total number of basis 
functions and ak, the coefficient of the kth basis function Bk(x). MARS 
models use hockey stick basis functions of the form (x  −  t)+and 
(t − x)+, with t being the knot. The basis functions in MARS are single 
truncated spline functions or a product of two or more spline functions 
for different predictors. The first order MARS model was built without 
interactions to over-fit the training data. A maximum number of basis 
functions equal to 30 was used as the stopping criterion. The model 
was pruned using a ten-fold generalized cross validation. The optimal 
model was selected based on evaluation of the model complexity and 
its predictive quantities for the test sets. Software implementation of 
the MARS model is available in Salford Predictive Modeler version 7.0 
from Salford Systems.

Bayesian variable selection for GAM 

Bayesian variable selection is an approach designed to assess the 
robustness of results, in terms of alternatives, by calculating posterior 
distribution over coefficients and models. One of the most popular 
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approaches is to assume a spike-and-slab mixture prior for each 
coefficient, with one component being a narrow spike around the 
origin that imposes very strong shrinkage on the coefficients and the 
other component being a wide slab that imposes very little shrinkage 
on the coefficients [13]. The posterior weights for the spike and the slab 
can then be interpreted analogously. To select the models of predictors 
between smoothing nonlinear terms and linear effects, we performed 
Bayesian variable selection in GAMs implemented in the R package 
spikeSlabGAM [14]. Bayesian GAMs produce a posterior probability 
for each possible model in addition to one for each predictor. Using 
Bayesian GAMs, model uncertainty can be incorporated into 
conclusions about parameters and predictions. Thus, we have to 
consider all possible models that fit. Bayesian GAMs can be applied 
using the R library BMA (http://cran.r-project.org).

Nonlinear testing procedures

We assessed the linear or non-linear association of binary response 
variables of selected variables in each model. Investigation of model 
predictors and their linear association was determined using GAMs. 
We evaluated the partial residual plot as a diagnostic graphical tool for 
identifying nonlinear relationship between the response and covariates 
for generalized additive models [10,12,15]. For each part predictor, 
we also examined the log-likelihood ratio test p-values, comparing 
the deviance between the full model and the model without that 
variable. We calculated the projection (hat) matrix, Cook’s distance, 
various residuals and the estimated probabilities versus each predictor 
to evaluate outliers and identify influential points in the models. 
We used both the change in residual deviance (as in parametric or 
nonparametric models), and the ROC to compare the performances of 
the statistical models.

Results and Discussion
Descriptive statistics

Sera from 30 subjects with H pylori infection, without endoscopy-
documented mucosal ulceration, and 30 subjects with H pylori 
infection and peptic ulceration were studied. Concentrations of the 
free amino acids were measured in each subject. The concentration of 
each amino acid by peptic ulcer disease (PUD) status is shown in Table 
1. The concentrations of taurine (0.15 ± 0.04 no PUD vs 0.19 ± 0.08
with PUD, p<0.05), urea (42.29 ± 11.41 no PUD vs 54.17 ± 22.42 PUD, 
p<0.05), glycine (3.97 ± 0.64 no PUD vs 4.64 ± 1.09 with PUD, p<0.05), 
citrulline (0.34 ± 0.1 no PUD vs. 0.54 ± 0.14 with PUD, P<0.001) were
significantly different. Of note, all amino acids were elevated in the
subjects with PUD, indicating upregulation of the urea cycle.

Parametric and nonparametric modeling

Our objective was to create a serum biomarker panel of amino 
acids that predict the occurrence of PUD. Table 2 shows the sparse 
regression coefficients with the LASSO, EN, and SCAD penalty which 
contain important variables and the model selected by using a BIC 
criterion. Because the underlying data structure dictates the selection 
of an appropriate modeling approach, we analyzed the contributions of 
parametric (linear) or nonparametric (spline) features using Bayesian 
variable selection. This method produces a hierarchy of structured 
model selections for parametric and nonparametric relationships to 
the PUD outcome for each feature. The posterior probabilities for the 
linear and spline components are shown in Table 3. From this analysis, 
the linear and spline component of citrulline and the spline component 
of histidine were significant (Table 4). 

As an additional analysis, we examined the relationships of amino 
acids to outcome using GAMs. Inspection of the GAM plots indicates 
that the partial residuals are nonlinear (Figure 1). For example the 
partial residual plot of citrulline shows a linear component at low 
citrulline concentrations until a concentration of 0.5 is reached, at 
which time the curve sharply inflects to a horizontal line. A similar 
inflection is seen in other variables. From this analysis, we concluded 
that the modeling of PUD requires a nonparametric approach. 

For the nonparametric modeling we applied MARS, an additive 
modeling technique that uses piecewise linear spline functions (basis 
functions) as predictors. MARS uses a two-stage process for constructing 
the optimal classification model. The first half of the process involves 
addition of basis functions until a user-specified number of basis 
functions have been reached. In the second stage, MARS deletes basis 
functions in order, starting with the basis function that contributes the 
least to the model until an optimum model is reached.

Model performance

The optimal MARS identified four informative amino acids 
(citrulline, histidine, lysine and arginine). Evaluation of the model 
performance is evaluated in several ways. The accuracy of prediction 
was evaluated using a confusion matrix. The model produced an 
overall accuracy of 91.67%, with a 96.67% ability to correctly identify 
PUD (Table 5). 

Characteristic Without Ulcer = 30 
(50%)

With Ulcer = 30 
(50%)

All subjects 
= 60

Taurine 0.15 ± 0.04 0.19 ± 0.08 0.17 ± 0.07 *
Phosphoserine 1.3 ± 0.49 1.43 ± 0.84 1.36 ± 0.69

Urea 42.29 ± 11.41 54.17 ± 22.42 48.23 ± 
18.63 *

Aspartic Acid 1.39 ± 0.58 1.46 ± 0.6 1.43 ± 0.59
Threonine 1.85 ± 0.48 2.02 ± 0.52 1.94 ± 0.5
Serine 2.49 ± 0.63 2.69 ± 0.81 2.59 ± 0.73
Glutamic Acid 7.04 ± 1.78 7.92 ± 1.69 7.48 ± 1.78
Glycine 3.97 ± 0.64 4.64 ± 1.09 4.31 ± 0.95*
Alanine 5.74 ± 1.53 5.77 ± 2.01 5.76 ± 1.77
Citrulline 0.34 ± 0.1 0.54 ± 0.14 0.44 ± 0.16 §§
Alpha Aminobutyric 
Acid 0.19 ± 0.07 0.21 ± 0.08 0.2 ± 0.07

Valine 2.89 ± 0.69 2.94 ± 0.8 2.91 ± 0.74
Isoleucine 0.9 ± 0.25 1 ± 0.3 0.95 ± 0.28
Leucine 2.59 ± 1.08 2.69 ± 1.34 2.64 ± 1.21
Tyrosine 0.88 ± 0.3 0.9 ± 0.32 0.89 ± 0.31
Phenylalanine 1.25 ± 0.31 1.37 ± 0.39 1.31 ± 0.36
NH3 2.95 ± 0.59 2.95 ± 0.88 2.95 ± 0.74
Ornithine 1.09 ± 0.36 1.39 ± 0.74 1.24 ± 0.6
Lysine 2.95 ± 1 3.23 ± 1.7 3.09 ± 1.39
Histidine 0.97 ± 0.28 0.94 ± 0.31 0.95 ± 0.29
Arginine 3.21 ± 1.47 3.2 ± 1.34 3.21 ± 1.39
Methyl Histidine1 0.07 ± 0.06 0.1 ± 0.09 0.09 ± 0.08
Tryptophan 0.02 ± 0.03 0.04 ± 0.07 0.03 ± 0.05
Carnosine 0.09 ± 0.12 0.14 ± 0.17 0.12 ± 0.15
Methyl Histidine3 0.02 ± 0.02 0.03 ± 0.03 0.02 ± 0.02 *
Phosphethanolamine 0.02 ± 0.02 0.03 ± 0.06 0.03 ± 0.05
Beta Aminoisobutyric 
Acid 0.05 ± 0.08 0.03 ± 0.05 0.04 ± 0.07

Sarcosine 0.07 ± 0.09 0.11 ± 0.18 0.09 ± 0.14

*P<0.05, §§ P<0.001

Table 1: Amino acid measurements in subjects with and without peptic ulcers.

http://cran.r-project.org
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The second analysis involved evaluation of the ROC, where 
sensitivity vs. 1-specificity was plotted. In the ROC analysis, a diagonal 
line (45 degree slope) starting at zero indicates that the output was 
a random guess, whereas an ideal classifier with a high true positive 
rate and low false positive rate would curve positively and strongly 
towards the upper left quadrant of the plot. The AUC is equivalent to 
the probability that two cases, one chosen at random from each group, 
are correctly ordered by the classifier. The AUC of the MARS model 

predictor was 0.9656 (Figure 2), suggesting that the model performed 
in a highly sensitive and specific manner. 

The relative contribution of each amino acid to the overall 
performance of the classifier was evaluated by the variable importance, 
a relative measure of the effect of removing a feature on the model 
accuracy. Here, citrulline was the most important variable (variable 
importance of 100%), histidine and lysine were less important 
but similar (31.5% and 27.3%, respectively) and arginine was least 
important (11.6%, Figure 3). 

Finally, the basis functions (BFs), which are combinations of 
independent variables in the model, are shown in Table 6. Importantly, 
we note no interaction terms, minimizing the potential for the model 
to have over-fitted the data. The addition of two BFs for citriulline 
corresponds well to the inflection of citrulline in the GAM analysis (cf. 
Figure 1).

The distributions of concentrations of the amino acids by disease 
classification are shown in the box plots of Figure 4. A nonparametric 
relationship is seen for each.

These data indicate that physiological concentrations of amino 
acids are perturbed by H pylori induced PUD, and combinations of 
citrulline, histidine, lysine and arginine can be used to predict PUD 
using nonparametric modeling. The residuals for modeling GAM 
fitting provide information for modeling checking in the GAM check 
plot of Figure 5. 

Characteristic LASSO EN SCAD

Taurine 0 1.204 0
Phosphoserine 0  0 0
Urea 0  0 0
Aspartic Acid 0  0 0
Threonine 0  0 0
Serine 0  0 0
Glutamic Acid 0  0 0
Glycine 0  0.137 0
Alanine 0  0 0
Citrulline 7.38  6.649 9.092
Alpha Aminobutyric 
Acid 0  0 0

Valine 0  0 0
Isoleucine 0  0 0
Leucine 0  0 0
Tyrosine 0  0 0
Phenylalanine 0  0 0
NH3 0 -0.019 0
Ornithine 0  0 0
Lysine 0  0 0
Histidine 0 -0.545 0
Arginine 0  0 0
Methyl Histidine1 0  0 0
Tryptophan 0  0 0
Carnosine 0  0.518 0
Methyl Histidine3 0  4.491 0
Phosphethanolamine 0  0 0
Beta Aminoisobutyric 
Acid 0  0 0

Sarcosine 0  0 0

Table 2: Sparse penalized logistic regression coefficients.

Table 3: Model analysis of deviance tests. Two GAM analyses are shown. For 
each, the DF, degrees of freedom and dominant factors significant at the level 
alpha=0.1 (*) and 0.05(**) are shown for each parameter.

GAM analysis incorporating both linear and smoothing components.
Parameters df Chi-square Pr> chisq
Linear(Citrulline) 1 14.4400  0.0004**
Linear(Lysine) 1 1.040 0.315
Linear(Histidine) 1 2.280 0.139
Linear(Arginine) 1 0.078 0.784
Spline(Citrulline) 2 8.596  0.014**
Spline(Lysine) 2 0.145 0.930
Spline(Histidine) 2 6.284  0.043**
Spline(Arginine) 2 2.141 0.343
GAM analysis incorporating only linear components.
Linear(Citrulline) 1 13.0320  0.0007**
Linear(Lysine) 1 0.476 0.494
Linear(Histidine) 1 1.638 0.205
Linear(Arginine) 1  0.0001 0.989

*:P(gamma=1)>.25; **:P(gamma=1)>.5

Table 4: Marginal posterior inclusion probability and term importance. Shown are 
the posterior model probabilities from the MCMC 8000 samples from 8 chains, 
each ran 5000 iterations after a burn-in of 500.

Coefficients P(gamma=1) Pi Dimension
Linear(Citrulline) 0.499 0.657 1*
Spline(Citrulline) 0.750 0.336  8**
Linear(Lysine) 0.006 0.000 1
Spline(Lysine) 0.006 0.000 6
Linear(Histidine) 0.026 -0.003 1
Spline(Histidine) 0.212 0.010 7
Linear(Arginine) 0.016 -0.001 1
Spline(Arginine) 0.015 0.000 7

Table 5: Confusion matrix for the MARS model.

Class Total Prediction 
H.Pylori PUD
(n=27) (n=33)

H.Pylori 30 26 4
PUD 30 1 29
Total 60 correct = 86.67% correct = 96.67%

( y)+, = max(0,y)

Table 6: MARS Basis Functions. Shown are the basis functions (BF) for the MARS 
model of PUD prediction. Bm, each individual basis function, am, coefficient of the 
basis function. 

Bm Definition am Variable descriptor
BF4 0.7615 -Histidine  3.49646 Histidine
BF6 Citrulline -0.338 6.6434 Citrulline
BF10  Citrulline -0.49 -7.00747 Citrulline
BF13 Lysine -1.401  0.121036 Lysine
BF18 Arginine -2.719 -0.104259 Arginine
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Figure 2: ROC analysis. Shown is a Receiver Operating Characteristic (ROC) 
curve for the predictive model for peptic ulcer disease. Y axis, Sensitivity; X 
axis, 1-Specificity.

Arginine

Histidine

Lysine

Citrulline

0  20  40  60  80  100

Variable Importance (%)

Figure 3: Variable Importance for MARS model of PUD. Variable 
importance was computed for each feature in the MARS model. Y axis, 
percent contribution for each analyte. 

Figure 1: Partial Residual Plots. Lines shown are a solid line representing a spline and dotted lines are 95% confidence band for each predictor. For each is shown 
the relationship between the predictor with residualized (adjusted) dependent variable values. 

Conclusion
We evaluated parametric and non-parametric modeling 

approaches (GAMs, Bayesian GAMs and MARS) for discovering 
specific physiological free amino acids as biomarkers for H. pylori-
associated peptic ulcer disease. These studies may have potential 
benefits by providing non-invasive identification of individuals at risk 
for clinically significant ulceration and for institution of appropriate 

targeted therapy. This study also suggests host-interaction pathways 
(amino acids) related to the pathogenesis of peptic ulcer in H. pylori 
infected patients. Interestingly, in Crohn’s disease, a gastrointestinal 
inflammatory disease, serum citrulline was found to be inversely 
correlated with each other [16]. The presence of amino acids that 
correspond to the urea cycle could reflect the presence of a urea cycle 
and a highly active urease in H. pylori. However, differences the urea 
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Figure 4: Box Plots. For each variable shown, the distribution of each predictor is divided over case (with ulcer) and control (without ulcer). PUD: endoscopy-
documented peptic ulcer.

Figure 5: GAM Check Plots. GAM plots produce deviance residuals against approximate theoretical quantilies of the deviance residual distribution. GAM: Generalized 
Additive Models.
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cycle amino acids in individuals who are infected but do not have 
PUD versus those that have PUD are not yet established, but could 
reflect differences in infected individuals, the infecting strains or both. 
We recognize that our study is limited because of the relatively small 
data set. Further evaluation of this modeling procedure on a large 
independent data set is needed.
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