
Research Article Open Access

Advances in Automobile 
EngineeringAd

va
nc

es
 in

 Automobile Engineering

ISSN: 2167-7670

Basma et al. Adv Automob Eng 2018, 7:3
DOI: 10.4172/2167-7670.1000188

Volume 7 • Issue 3 • 1000188
Adv Automob Engg, an open access journal
ISSN: 2167-7670

Keywords: Hybrid electric vehicle; Dynamic programming; Plug-in 
hybrid vehicles; Electric vehicles

Introduction
Environmental concerns have been the leading drive behind the 

hybrid technologies emerging in the automotive industry. A considerable 
amount of effort is spent on designing fuel-efficient vehicles that can meet 
the consumer's demands of functionality and comfort, and maintain a 
low level of emissions. Electric Vehicles (EV), Hybrid Electric Vehicles 
(HEV) and Plug-In Hybrid Vehicles (PHEV) have emerged as viable 
solutions to these concerns, with the focus being directed on HEVs and 
PHEVs as the transition phase between conventional vehicles and fully 
electric vehicles. 

EVs have two power components, the Energy Storage System (ESS), 
typically a battery or a fuel cell, and the propulsion system, namely an 
Electric Machine (EM). HEVs contain an additional component which 
is an internal combustion engine (ICE) that can assist in providing 
propulsion, charge the battery or both. PHEVs are similar to HEVs in 
powertrain architecture, with the added ability to charge their batteries 
from the electric grid. The capacity of the battery and the power of the 
electric motor differ between these three types, being the greatest for 
EVs and the least for HEVs with the PHEVs somewhere in between. 

Moreover, hybrid vehicles can be classified under three main 
architectures: Series, Parallel, and Series-Parallel. The Series HEV is 
driven only by an electric motor; whereas the engine is coupled to an 
electric generator (EG), and acts as an Auxiliary Power Unit (APU) for 
charging the battery. The Parallel HEV can be driven by both the engine 
and the motor. The Series-Parallel combines the advantages of both 
architectures since the engine can drive the vehicle and recharge the 
battery [1]. In this paper, we are considering the case of a series PHEV, 
due to its simple powertrain architecture and control strategy. 

The energy consumption of these vehicles is highly dependent on 
their Energy Management Strategy (EMS). The EMS in HEVs decides 

on the instantaneous power request from the different energy sources 
while respecting numerous constraints. Different control strategies have 
been deployed in HEVs. HEVs control strategies can be categorized into 
two main groups, optimization based control, and rule-based control. 
Optimization based controllers aim to minimize a cost function over 
a predefined trip. The cost function is defined in general as the vehicle 
energy consumption or emissions. In contrast, rule-based controllers are 
fundamental controllers that depend on the vehicle mode of operation 
where rules are established based on heuristics, engineering intuition or 
even mathematical models [2,3]. 

RB controllers consist of a set of rules that are initially predefined 
without any prior knowledge of the trip [4]. These rules are further 
calibrated using vehicle simulations. RB controllers can be easily 
implemented in real time application [2], however, they cannot 
guarantee the optimal behavior of the powertrain components [5]. 
There are two main types of RB controllers, deterministic RB, and fuzzy 
RB controllers. 

Deterministic RB controllers are subdivided into two types: the 
thermostat control strategy and the power follower strategy [2,3,5]. 
The basic deterministic RB method is the thermostat control strategy 
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where the engine is turned ON and OFF to maintain the battery state of 
charge (SOC) within predefined limits [6]. Mohammadian and Bathaee 
[7], used a thermostatic deterministic RB method to control a series 
HEV which proved to be an implementable and efficient strategy in 
real time. However, this strategy is not capable of satisfying the vehicle 
power demands at all operating conditions [3]. The commonly used 
deterministic RB controller is the electric assist or power follower 
strategy. In this strategy, the engine is the sole power supply and the 
electric machine supplies additional power whenever needed by the 
vehicle [2-6]. This strategy is implemented in the Toyota Prius and 
Honda Insight HEV. The main drawback of this strategy is that the 
efficiency of the whole drivetrain is not optimized [3].

Fuzzy RB controllers are an extension of the deterministic RB 
control strategy. However, the rules here are not mathematically precise 
[6]. The core of fuzzy RB control is that it is based on approximation 
rather than precision, making it tunable and adaptive to some extent [5]. 
The simplest type of fuzzy RB controller is the conventional/traditional 
fuzzy control. It is developed to force the engine to operate on its optimal 
efficiency line using load balance by means of the electric machine [5]. 
Its main drawback is that it can only be considered optimal for specific 
drive cycles. Another type of fuzzy logic control is the adaptive fuzzy 
RB control. This control can combine both fuel economy and emissions 
reduction considering that these two objectives are conflicting [2]. This 
confliction prevents both objectives from being completely optimized, 
however, a combination of sub optimal solutions is resulted depending 
on the weighting factors considered for each objective [5]. The last type 
of fuzzy control is predictive fuzzy RB control. It is not based on a prior 
knowledge of the trip; however, it is a real-time control based on data 
collected using the Global Positioning System (GPS) [3]. Hajmiri and 
Salamasi [8], use a predictive fuzzy control to manage the power flow in 
a series HEV to increase the battery state of health (SOH). Few studies 
have deployed predictive fuzzy RB control to improve fuel economy or 
reduce emissions.

The other main category of HEVs EMS is the optimization based 
EMS. It is based on defining a cost function which sums all the objective 
functions to be minimized [5]. The cost function may include fuel 
consumption, emissions, torque, battery aging, etc. depending on 
the application [2]. Optimization based EMS is split into two main 
sub-categories, global optimization strategies, and local optimization 
strategies.

Global optimization strategies can introduce a global optimum 
solution for a defined cost function [6]. These strategies require 
a prior knowledge of the entire trip including the route, driver’s 
response, driving behavior and the battery SOC [2]. This makes global 
optimization strategies unimplementable in real time, in addition to 
their computational complexity [3]. One type of global optimization 
strategies is Linear Programming. Although the optimization of 
powertrain fuel economy is a convex non-linear problem, linear 
programming approximates this problem into a linear one to simplify it 
[2]. Tate and Boyd [9], were the first to take this approach and used it on 
a series HEV. However, this approach is still an approximation for the 
non-linear behavior of the system. Another type of global optimization 
strategies is Dynamic Programming (DP). Originally developed by 
Richard Bellman in 1940, it is a reasonable approach to solve the fuel 
economy problem as it is dynamic and capable of dealing with the non-
linearity nature of this problem [3]. Several studies have used DP as an 
EMS for HEVs [10-13]. Other global optimization problems such as 
genetic algorithm (GA) are also used. Just like DP, many studies,[14-17] 

have deployed this strategy in HEV. Compared to DP, GA is a heuristic 
approach [2], and thus, global optimality might not be achieved.

The last category of EMS for HEV is the local optimization 
based strategies. Such strategies split the global optimization 
problem into a series of local optimization problems reducing the 
computational burden [5]. Local optimization based strategies such 
as PMP (Pontryagin’s Minimum Principle) and ECMS (Equivalent 
Consumption Minimization Strategy) are widely deployed in HEVs. 
PMP is a special case of the Euler-Lagrange equation [2]. It is an 
instantaneous optimization of a Hamiltonian function for a specific 
drive cycle [5]. Many studies [18-20], used PMP as an optimal or close to 
optimal EMS. However, this strategy requires a prior knowledge of the 
drive cycle to properly define the Hamiltonian function, otherwise, an 
iterative approach is considered [21]. Thus, PMP can’t be implemented 
in a real-time application. On the contrary, ECMS, just like PMP, 
defines the Hamiltonian function that combines both the fuel and 
electric energy price and optimizes instantaneously without any prior 
knowledge of the trip [5]. The Hamiltonian function is defined based 
on past data and predictions and it must be redefined continuously 
[22]. Many studies [23-25], have used ECMS as an EMS in HEV. ECMS 
is a close to optimal online EMS that can be easily implemented in 
real-time. However, sustaining the battery charge is not guaranteed 
and it is highly dependent on the predictive controller used which is an 
expensive and complicated system [5]. 

Building on the aforementioned findings, the review of these studies 
underlines the following two gaps:

• There is no comprehensive methodology to design, in few 
steps, an RB EMS for HEV with close to optimal powertrain 
components behavior

• Current RB EMS for HEV cannot capture variations in trip 
distance lengths and traffic intensities without implementing 
complicated driving pattern recognition

Therefore, based on the above synthesis of the insights and gaps 
in the literature, this study proposes a comprehensive methodology to 
help powertrain-modeling practitioners to design in few steps an EMS 
for HEV that provides close to optimal consumption results.

This paper is novel in three ways: first, it provides a systematic 
methodology to design an RB EMS for HEV, which can be implemented 
in real-time operations. The case of a Series plug-in hybrid vehicle is 
considered in this study. Second, the proposed EMS ensures close to 
the optimal behavior of the powertrain components under specific 
drive cycles (the WLTP is considered in this study) as it is derived from 
DP global optimization strategy. Third, the presented methodology 
provides insights on adapting the EMS rules in order to capture the 
variation in trip distance lengths and the traffic intensities without 
implementing complicated driving pattern recognition algorithms.

The rest of the paper is structured as follows: the vehicle modeling 
setup is presented in section 2, a methodology for designing the optimal 
EMS is presented in section 3, and section 4 outlines the main results 
(Figure 1).

Vehicle Modeling Setup
Powertrain architecture: Series plug-in hybrid electric vehicle

A plug-in series HEV is considered in this study. Vehicle 
parameters are obtained from the second-generation series-parallel 
TOYOTA PRIUS and modified accordingly to fit the purpose of this 
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study. The powertrain includes a 50-kW electric machine to drive the 
vehicle and recover braking energy, and a 1.5 L, 57 kW Atkinson engine 
mechanically connected to a 50-kW Electric Generator (EG) to act as 
the Auxiliary Power Unit (APU). 

For this study, the previous 1.3 kWh TOYOTA Prius Nickel-Metal 
Hybrid (NiMH) battery is upgraded to 5.1 kWh and operates in the 
range of 80% to 30% State Of Charge (SOC). The vehicle parameters are 
summarized in Table 1.

The series hybrid powertrain is shown in Figure 2, where the 
mechanical and electrical connections between the different components 
are noticeable. Only the EM is connected to the wheels whereas the 
engine is decoupled from the wheels which allow it to operate at any 
RPM regardless of the vehicle speed.

Modelling technique: Energetic macroscopic representation

Energetic Macroscopic Representation (EMR) is a graphical tool 
that describes electromechanical systems based on their components 
interactions [26]. This technique proved very useful in simulating the 
power flows in HEV powertrains. Powertrain elements are represented 
graphically by blocks and are divided into four types: Source/Sink 
elements, Conversion elements, Accumulation elements, and Coupling 
elements. Their respective, conventionally used, pictograms are shown 
in (Table 1). Each element has input and output vectors representing 
its action/reaction relations with the adjacent elements. The product 
of each pair of vectors between adjacent elements represents the 
instantaneous power exchange occurring between them. This is defined 
as the interaction principle [27].

This way of representation allows the deduction of a control strategy 
by applying the inversion principle. This method is called Inversion Based 
Control (IBC) and dictates the inversion of each element. The control 
structure of a system is considered an inversion model of the system 
because the control must define the appropriate inputs to achieve the 
desired output. In this method, relationships without time-dependence 
are directly inverted. However, following the integral causality principle, 
a direct inversion of time-dependent relationships is not possible. An 
indirect inversion is thus considered using proportional-integral (PI) 
controller [27].

EMR and IBC of the studied power train

The EMR model of the studied series PHEV is demonstrated in 
Figure 3. The fuel tank and battery form the energy storage unit of 
the vehicle. The flow of electric energy from the EG, battery, and EM 
is coupled in an inverter. The EM, differential, and wheels form the 
traction unit. The transmission includes only the differential. 

The IBC is also shown in Figure 3. The tuning path, which is the set of 
variables that form the control loop, has two tuning inputs: the reference 
braking force Fbreak_ref, and the reference torque of the EM. These tuning 
inputs will control the vehicle speed. Thus, the elements to be inverted 
are the chassis, mechanical coupling, wheels, and driveline. The APU 
and energy storage unit is not included in the tuning path since they are 
controlled and tuned by the EMS, which is detailed further in Section 3.

Multi-physical conversion elements: an element that converts 
energy from one form to another: The multi-physical conversion 
elements include the ICE, EG, and the EM. 

ICE model: The engine is utilized to convert the chemical energy 
of the fuel into mechanical work that drives the EG. Figure 4 shows the 
engine efficiency map. The fuel consumption is calculated as follows:

( ) ( ) ( )
( )fuel

ICE ICE

LHV ICE

m
t T t

t
Q t
ω

η
×

=
×

                  (1)

Where TICE is the engine torque, ωICE is the engine speed, and ηICE 
is the engine efficiency computed from the engine performance map 
illustrated in Figure 4.

Electric generator model: The 50-kW EG is connected directly 
to the ICE and is used to charge the battery. The EG efficiency map is 
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Figure 1: Classification of control strategies for HEV.

Electric Connection 
Mechanical 
Connection 

Figure 2: Series powertrain architecture.

Constant Description Prius Model
mveh Vehicle mass 1420 kg

 f0

Friction coefficient 0 195

f1 Friction coefficient 1 0.3389
f2 Friction coefficient 2 0.0296

rwheel Wheel radius 0.301 m
rdiff Differential ratio 4.113
rreg Engine/generator ratio 1
ηdiff Differential efficiency 0.98
ηgb Gear efficiency 0.95

QLHV Lower heating value of gasoline 42.3 MJ/kg
Paux Auxiliaries power 300 W
Qb Battery capacity 5100 Wh

Table 1: Prius model parameters.



Volume 7 • Issue 3 • 1000188
Adv Automob Engg, an open access journal
ISSN: 2167-7670

Citation: Basma HM, Mansour CJ, Halaby H, Radwan AB (2018) Methodology to Design an Optimal Rule Based Energy Management Strategy 
Using Energetic Macroscopic Representation: Case of Plug-In Series Hybrid Electric Vehicle. Adv Automob Eng 7: 188. doi: 10.4172/2167-
7670.1000188

Page 4 of 11

shown in Figure 5. Generator torque (TEG) speed (ωEG) electric power 
(PEG) and current (IEG)are calculated as follows:

( ) ( )1
EG ICE

EG

T t T t
K

=                     (2)

( ) ( )EG EG ICEt K tω ω=                    (3)

( ) ( ) ( ) ( )EG EG EG EGP t t T t tω η=                   (4)

( ) ( )
( )EG

EG

EG

P t
I t

u t
=                    (5)

where KEG is the gear ratio between the engine and the EG, ηEG is the EG 
efficiency, and uEG  is the EG voltage.

Electric machine model: In the Series architecture, the wheels are 
mechanically coupled to the electric machine. Thus, the EM needs 
to meet the total requested load power Pl. It operates in two modes, 
traction mode, and Brake Energy Recovery (BER) mode, depending 
on whether Pl is positive or negative. During braking, the EM recovers 
kinetic energy and consequently charges the battery. The braking torque 
recovery is limited by the maximum torque of the EM and the battery 
SOC. The torque TEM is determined from the IBC as a tuning parameter, 
TEM _req. The current, TEM , is calculated depending on the operating mode:

( ) ( ) ( )
( ) ( )

EG EM
EM k

EG EM

T t t
I t

u t t
ω
η

=                    (6)

where uEG is the EM voltage, k
EMη  is the efficiency of the EM and k take 

the values of zero and one, depending on the operating mode of the EM.

 

Figure 3: Energetic macroscopic representation and inversion-based control of the investigated series hybrid powertrain.

 
Figure 4: Engine efficiency map.
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Mono-physical conversion elements: an element that transmits 
energy without changing its form: The mono-physical conversion 
elements include the driveline and the wheels.

Driveline model: Since the series architecture does not include a 
gearbox, the differential is modeled as the only transmission element 
in the powertrain. The driveline torque (Tdriveline) and speed (ωdriveline) are 
calculated as follows: 

( ) ( )1
driveline EM trans

D

T t T t
K

η=                   (7)

( ) ( )driveline D EMt K tω ω=                    (8)

where KD is the final drive ratio and ηtransis the driveline efficiency.

Wheels model: The wheels model is simplified and considered as 
a single wheel receiving all the torque from the driveline. The traction 
force (Ftraction) and the resulting vehicle velocity (Vveh) are calculated as 
follows:

( ) ( )driveline
traction

wheel

T t
F t

r
=                    (9)

( ) ( )driveline
veh

wheel

t
V t

r
ω

=                    (10)

where rwheel is the wheel radius.

Coupling Elements: an element that couples 2 or more energy 
inputs of similar form: The coupling elements include the electric and 
mechanical coupling. 

Electric coupling: This element receives currents from the EG and 
the EM, and outputs the resulting battery current, Ibat. Ibat is negative 
during discharge mode and positive during charging mode. The battery, 
EG, and EM are electrically connected in parallel and hence obey the 
following equations:

( ) ( ) ( )bat EG EMu t u t u t= =                    (11)

( ) ( ) ( ) ( )bat EG EM auxI t I t I t I t= + +                   (12)

where IEG is the EG current and Iaux is the current demanded by the 
auxiliaries of the vehicle. IEG is positive since the EG only charges the 
battery, and Iaux is obviously negative.

Mechanical Coupling: The mechanical coupling receives the forces 
Ftraction and Fbreaking acting on the wheels and outputs the total force, Ftotal, 
driving the vehicle chassis as follows:

( ) ( ) ( )total traction breakingF t F t F t= +                   (13)

Where naturally Ftraction(t) is a positive quantity and Fbreaking(t) is a 
negative one. Note that the vehicle controller avoids actuating these two 
forces simultaneously.

Accumulation Elements: an element that accumulates energy: 
The accumulation elements are time-dependent elements and cannot 
be inverted directly. In this model, only the vehicle chassis is treated 
as an accumulation element. The inertias of the different driveline 
components are neglected.

Chassis: The energy is accumulated in the chassis in the form of 
kinetic energy where the velocity is computed as follows:

( ) ( ) ( )( )1n total road
veh n

F t F t
V t dt

M
+ −

= ∫                (14)

with F0 is the mass of the vehicle and Froad is the sum of the resistive 
forces acting on the vehicle, calculated as follows:

( ) ( )( ) ( )( )2
0 1 2road veh vehF t f f V t f V t= + +               (15)

Where F0 represents rolling resistance, F1 represents rolling 
resistance dependence on velocity in addition to driveline losses and 
finally F2 represents aerodynamic drag.

Energy consumption calculation

The engine fuel consumption is computed using equation (1). To 
monitor the battery SOC and thus help choose the appropriate driving 
mode, electric energy consumption is calculated at each instant. The 

 

Figure 5: MG efficiency map.



Volume 7 • Issue 3 • 1000188
Adv Automob Engg, an open access journal
ISSN: 2167-7670

Citation: Basma HM, Mansour CJ, Halaby H, Radwan AB (2018) Methodology to Design an Optimal Rule Based Energy Management Strategy 
Using Energetic Macroscopic Representation: Case of Plug-In Series Hybrid Electric Vehicle. Adv Automob Eng 7: 188. doi: 10.4172/2167-
7670.1000188

Page 6 of 11

battery is modeled as a voltage source with an internal resistance [28]. 
The battery power (Pbatt), current (Ibatt), and SOC, are computed as 
follows:

( ) ( ) ( )batt generator motor auxP t P t P t P= + +                (16)

( )
( )( ) ( )( ) ( ) ( )( )

( )( )
2

int

int

4

2
OC OC batt

batt

V SOC t V SOC t P t R SOC t
I t

R SOC t

− −
=           (17)

( ) ( ) ( ) ( )( )batt batt battP t I t V t SOC t=                (18)

( ) ( ) ( )1 batt

batt

P t
SOC t SOC t

C
= − −                (19)

The generator power Pgenerator is a positive quantity as it charges the 
battery, the auxiliary power is a negative quantity as it discharges the 
battery and the electric motor power Pmotor is negative during the traction 
mode and positive during the BER mode. The open-circuit voltage VOC 
and the internal resistance Rint of the battery are considered from [29], 
where the nominal voltage is 201.6 V and the average internal resistance 
is 0.36 Ohms.

Energy Management Strategy
In this section, the different energy management strategies, 

controlling the vehicle model, will be investigated. The Optimal RB (Opt. 
RB) and optimized adaptive RB (Opt. A-RB) controllers are compared 
against a basic RB controller and the global optimal strategy of DP. The 
four EMS are detailed in the following section.

Basic RB control

The controller of the current vehicle is of RB type. it follows a charge-
depleting (CD) then a charge sustaining (CS) strategy [30]. The battery 
is depleted in the first part of the trip with the APU turned off, thus, 
completely utilizing the all-electric range of the PHEV. Once the battery 
SOC reaches its lower limit, namely 30%, the basic RB controller turns 
on the APU. The battery SOC is then maintained around 30% using 
a thermostat strategy for the entire remainder of the trip. A detailed 
explanation of how thermostat strategies function can be found in [31]. 
The engine runs at its optimal efficiency line in this case.

DP control

This study will mainly focus on minimizing the fuel consumption of 
the series PHEV at hand. The EMS controls the APU status (engine on/
off and engine speed) as the main control, while the EM is simply tasked 
with meeting the driving load. 

Dynamic Programming is used as the global optimization routine. 
The WLTC drive cycle is used to emulate home-work commutes 
representing a recurrent trip and the results obtained will be analyzed 
in an approach like that used in [29]. Specific rules will be deduced 
from the DP control results and translated into an RB controller, to be 
validated against the DP controller.

Since DP cannot be used with the graphical EMR model done on 
Simulink, an equivalent model was elaborated on MATLAB. The battery 
SOC was chosen to be the only state variable x(t), while the APU status 
(on/off) and the ICE speed were chosen as the two control variables, 
U1(t) and U2(t), respectively. A value of 1 for U1(t) corresponds to APU 
On and a value of 0 corresponds to APU Off. These variables and their 
respective limits are summarized in Table 2. 

The DP model can be summarized by equations (2) to (5) and the 
following equations:

( ) ( ) ( ) ( )load resistive

dV t
P t F t M V t

dt
 

= + 
 
∑               (20)

( ) ( )( )Eng e line EngT t f tω−=                 (21)

( ) ( ) ( )1 2Eng t U t U tω =                 (22)

( ) ( )Eng Eng EngP t T tω=                 (23)

( ) ( ) ( ) w
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D
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dt K
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∑               (24)

( ) ( )D
EM vehicle

w

Kt V t
r

ω =                 (25)

( ) ( ) ( ),EM mech EM EMP t T t tω=                (26)

( ) ( )
( )

,
,

EM mech
EM elec k

EM

P t
P t

tη
=                 (27)

( ) ( )
,

Eng
EG

trans e g

T t
T t

K −

=                 (28)

( ) ( ) ,EG Eng trans e gt t Kω ω −=                 (29)

( ) ( ) ( ),EG mech EG EGP t T t tω=                 (30)

( ) ( ) ( ),elec ,EG EG mech EGP t P t tη=                  (31)

where k = +/- 1, depending on the operating mode of the EM, KD is the 
final drive ratio, rw is the wheel radius, Ktrans,-g is the transmission ratio 
between the engine and the electric generator and fe-line is the optimal 
efficiency line of the engine or in other words, it is the optimal engine 
torque value at a specific speed that will minimize the engine fuel 
consumption. It is worth noting that engine speed is the only control 
variable as it operates on its optimal efficiency line.

To validate the EMR model behavior, the DP model was run for 
one WLTP cycle and the resulting control variable vectors were directly 
deployed inside the EMR Model. The powertrain component in the 
EMR model follows the same behavior of the powertrain components in 
the DP model. Some results are shown in Figures 6-8.

Let U1 = {uo, ..., un-1} & U2 = {uo, ..., un-1} (where n is the time length of 
the route) be a certain APU status and speed strategy obtained from the 
DP model over the scheduled route, with initial and final SOCs being 
80% and 30%, respectively. Then the goal is to find the optimal strategy 
Uopt that minimizes fuel consumption (the cost function C) over the 
scheduled route, formulated as 

( ) ( ) ( )( )1 20
, ,

n

fuelC x tm u t u t= ∫                 (32)

The APU status u1 (t) and engine speed u2 (t) at any instant t are chosen 
with the future trip energy consumption taken into consideration. As a 
result, the optimal APU status and speed strategy is obtained with an 
optimal SOC trajectory, as shown in Figure 9 and Figure 10, respectively, 
for a scheduled route of three repeated WLTP cycles. To make sure that 
the physical limits of the different components are respected in terms of 
speed, torque, power, and current, certain constraints were forced on the 
DP model. They can be summarized in the following equations:

( )( ) ( )( ) ( )( )min maxEM EM EM EM EM EMT t T t T tω ω ω− −≤ ≤             (33)

Variable Type Variable Max Min
State Battery SOC 0.8 0.3

Control APU on/Off 1 0
Control Engine Speed 4750 RPM 1350 RPM

Table 2: DP state and control variables parameters.
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( )( ) ( )( ) ( )( )min maxEG EG EG EG EG EMT t T t T tω ω ω− −≤ ≤          (34)

( )0 6100EGrpm t rpmω≤ ≤                (35)

( )6100 6100EMrpm t rpmω− ≤ ≤               (36)

( ) ( )( )max0 Eng Eng EngT t T tω−≤ ≤               (37)

( ) ( )arg argbatt disch e batt batt ch eI I t I t− −≤ ≤               (38)
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Figure 6: Vehicle speed profile validation between DP and EMR models.
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Figure 9: Optimal engine speed for part of the first WLTP cycle.

The optimal SOC trajectory shown in Figure 10, resulting from the 
DP optimization model which serves as our benchmark in this study 
consists of consuming the electric energy of the battery throughout 
the entire trip. This is in contrast with simply using the previously 
explained CD/CS strategy that is widely implemented as a basic EMS 
for HEVs[30].

Since the optimal control strategy Uopt from DP cannot be 
implemented in real time, the Opt. RB controller will be constructed to 
replicate the optimal behavior as close as possible. The power behavior 
of the drivetrain components is introduced in Figure 11 and plotted 
against the vehicle load power. Five control modes are observed: break 
energy recovery (BER) mode, the electric vehicle mode, and three 
different APU modes.

1. In BER mode (Pload<0), the APU is switched off and the EM is 
recovering kinetic energy and storing it in the battery

2. In EV mode (0<Pload<Pev), the APU remains switched off while 
the EM withdraws all its power from the stored energy in the 
battery. As the load power exceeds the Pev threshold, DP switches 
to APU mode. In Figure 11, the distance traveled is 70 km (three 
repeated WLTP drive cycles) and Pev is 10.9 kW. This value was 
observed to change with the distance: the longer the route, the 
smaller Pev is. Figure 12 shows the variation of Pev as a function of 
the distance (one to five repeated WLTPs). This decrease in the 
threshold suggests that for larger distances, the APU turns on 
more frequently, thereby preserving the battery energy until the 
end of the trip

3. In APU mode (Pload >Pev), three sub-modes are identified with a 
difference in engine operating speed. The first two sub-modes are 
separated by the threshold Papu-1 and the last two by Papu-2. In APU 
mode 1, the APU delivers around 23 kW of electric power which 
is used to drive the motor, while the surplus power is stored in the 

0

20

40

60

80

100

120

140

20

40

60

80

0 1000 2000 3000 4000 5000

Ve
lo

ci
ty

 [k
m

/h
]

Ba
tt

er
y 

SO
C 

[%
]

Time [s]

SOC V

Figure 10: Optimal battery SOC path for three repeated WLTPs.

Figure 11: Power behavior of the drivetrain components under DP control 
for three repeated WLTPs.
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Figure 14: APU state and battery SOC under optimized rule based control.

battery. Once the load power surpasses Papu-1, control switches to 
APU mode 2, where the APU power increases in a linear fashion 
as a function of the load power. In the last sub-mode (when Pload 
> Papu-2), the APU delivers around 33 kW to drive the motor and 
the surplus is also stored in the battery. The thresholds Papu-1 and 
Papu-2 follow the same trend as Pev and decrease with increasing 
trip distance.

Optimized RB control

The optimized RB controller, according to the discussed modes 
above, can be written in a way to mimic the DP optimal behavior on 
the WLTP cycles. Based on Figure 12, the controller needs to obtain a 
new engine power-on threshold (Pev) for each varying trip distance, in 
addition to the two APU thresholds Papu-1 and Papu-2. DP can compute 
these parameters as soon as the driver inputs their destination into 
the controller. The architecture of the Opt. RB controller is shown in 
Figure 13. It is like the one introduced in [29] by the present co-author, 
however, modified to fit this study’s series PHEV.

The offline computation starts as soon as the driver inputs the 
desired destination. Using GPS and traffic management systems, 
the trip load simulator calculates the required Pload. DP receives the 
computed Pload and uses it to determine the optimal power thresholds 
for the selected route. The online computation aspect of the controller 
happens in real-time while the car is being driven. The driver power 
interpreter outputs the appropriate power demand to meet the vehicle 
load and satisfy driver commands. This demand is received by the 
power management controller which in turn outputs the correct APU 

command (whether to turn the engine on or off and at which speed) 
according to the thresholds resulted from DP.

For the considered WLTP cycle, the driving conditions and 
commands of the Opt. RB control is summarized in Table 3.

Where SEng is engine state (ON/OFF) and PEng is engine power.

The continuous depletion of the electric energy of the battery until 
the end of the trip under EMR control is highlighted in Figure 14. 

As the controller rules are derived from DP simulations based on 
the WLTP drive cycle, it is then important to mention that these rules 
are specific to the WLTP cycle and any difference in the scheduled route 
would lead to a diversion from the optimal DP results. Such differences 
in the scheduled route would translate into a lower or higher Pload 
on average and thus an early depletion or overcharge of the battery, 
respectively. Hence, DP would need to rerun the calculations and 
obtain updated thresholds and engine power levels for optimality.

Optimized adaptive RB control

To increase the functionality of the optimized RB controller, 
traffic intensity was taken into consideration. Since, as discussed in 
the introduction, this RB controller is being developed for repetitive 
home-work commutes, where the trip distance does not change, the 
traffic model considered was assumed to affect total trip time only and 
not the total distance. In this case, it is assumed that travelers will take 
no alternative routes to avoid traffic as the main concern is to study 
the impact of the vehicle average speed on the controller response and 
the corresponding energy consumption variation. Hence, the average 
velocity of the WLTP cycle would increase or decrease, respectively, 
with a decrease or increase in traffic intensity. 

To simplify nomenclature, the original WLTP cycle is referenced as 

Driving Mode Driving Condition
Driving Command

Engine

Electric Pl < Pev

SEng=OFF
PEng=0

APU mode 1 Pev < Pl < Papu-1

SEng=ON
PEng=23 kW

APU mode 2 P apu-1 < Pl < P apu-2

SEng=ON
PEng=1.3 × Pl+7340 kW

APU mode 3 Pl > Papu-2

SEng=ON
PEng=33 kW

Regenerative braking Pl < 0 SEng=OFF
PEng=0

Table 3: Power management rules for the optimized rule-based controller.
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WLTPbaseline, while the modified WLTP cycles are referenced using the 
average velocity ratio, RV as follows:

modavg ified
V

avg baseline

V
R

V
−

−

=                 (39)

Four cases of increasing traffic were considered, compared to only 
one for decreasing traffic, since delays due to heavy traffic are more 
likely to happen in real life. Table 4 summarizes the cases considered for 
the modified WLTP drive cycles with their respective total durations 
and average velocity ratios. To better visualize the modified drive cycles 
compared to WLTPbaseline, Figure 15 shows the profiles of one WLTPbaseline 
and two modified WLTP drive cycles of RV equal to 0.8 and 1.1.

A similar procedure to that of section 3.2 is followed for the 
modified cycles to determine the new optimal power thresholds using 
DP. These updated thresholds were compared to the ones obtained for 
the WLTPbaseline cycle, to establish a relationship between the two. For 
the case of the considered three and five repeated WLTP drive cycles, 
two general trends are observed:

1. For the case of RV>1 (decrease in traffic), the optimal power 
thresholds were higher than those of the WLTPbaseline

2. For the case of RV<1 (increase in traffic), the optimal power 
thresholds were lower than those of the WLTPbaseline

These results are in line with the following analysis: when the 
velocity of the drive cycle increases, the Pload requested also increases. 
Consequently, the new optimal power thresholds will be higher in order 
to avoid overcharging the battery as Pload is expected to surpass the 
baseline Pev more frequently. Similarly, an increase in traffic intensity 
leading to a lower Pload results in lower optimal power thresholds. 

It can then be concluded that the WLTPbaseline power thresholds will 
need to be corrected by a certain factor, call it  TCFn (Traffic Correction 
Factor for Power Threshold n), to remain optimal, using the following 
equation:

modn ified n n baselineP TCF P− −= ×                (40)

With n = ev, apu-1, or apu-2 depending on which threshold is being 
updated.

Equation (42) can be reformulated and a traffic correction factor, 
TCFn, is deduced:

modn ified
n

n baseline

P
TCF

P
−

−

=                 (41)

Figure 16 introduces the TCF for the thresholds TCFev, TCFapu-1, and 
TCFapu-2, as function of the varying average velocity ratio. The trends 
discussed above are highlighted in this figure where an RV>1 would 
output a TCF>1, and thus, leading to higher thresholds. Similar logic is 
applied when RV<1. It is interesting to note that for an RV=1 (signifying 
WLTP baseline) the TCFs all intersect at the value 1, meaning no correction 
is done to the baseline thresholds.

From the above analysis, the Opt. RB EMS architecture is modified 
to include a Traffic Monitoring Module that receives the updated average 
velocity from the Traffic Management System and the thresholds Pev, 
Papu-1, and Papu-2 from DP. Using equation (41) and the correlations are 
shown in Figure 16, the Traffic Monitoring Module outputs the updated, 
optimal thresholds to the Power Management Controller. 

The Opt. A-RB EMS architecture is shown in Figure 17.

WLTP Duration [s] Vavg [km/h]
Rr=1.1 4912 50.8

Decrease in traffic
Baseline 5403 46.2
Rr =0.9 6004 41.6

Increase in traffic 
Rr =0.8 6754 37
Rr =0.7 7719 32.4
Rr =0.6 9006 27.7

Table 4: The different WLTP velocity modifications.
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Figure 17: Optimized adaptive rule-based EMS architecture for the Prius 
series PHEV.
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It is worth noting that the power management rules of Table 3 
remain the same for both the Opt. RB and the Opt. A-RB controllers.

Result
A detailed analysis of the optimal control strategy from DP in this 

paper resulted in an optimized RB controller for a series PHEV. The 
operating mode of the Opt. RB controller consists of blending the 
EV mode with the CS mode to preserve electric energy until the end 
of the trip. This mode showed close-to-optimal fuel consumption as 
compared with DP. An additional optimized adaptive RB controller was 
developed to consider varying traffic intensities. 

Optimized RB controller

Figure 18 shows a comparison of the engine fuel consumption under 
the basic RB controller, the Opt. RB controller and the DP controller. 
Opt. RB control shows 1% to 2% increase in fuel consumption relative 
to the DP controller over distances covering up to 118 km (one to 
five repeated WLTP cycles) and 13% to 16% decrease in FC relative 
to the basic RB controller. This signifies that a remarkable reduction 
in computational requirements from DP optimal control to Opt. RB 
control does not necessarily lead to deteriorated fuel economy.

Figures 19 and  20 are from simulations run on three repeated 
WLTP cycles and used as an example of the obtained results. From the 
battery SOC in Figure 19, we can notice that the Opt. RB controller 
charges the battery slightly higher than DP and this is due to the minor 
approximations considered upon deriving the power thresholds, 
mainly data filtering and fittings. The basic RB controller follows the 
charge depleting then charge sustaining strategy previously mentioned, 
which explains why the fuel consumption is way higher than the 
optimal consumption. Obviously, DP cannot be perfectly emulated 
by a set of rules and these slight differences can be noticed in Figure 
20 where the engine speed of the Opt. RB controller diverges from the 
optimal strategy at some points. These load power points lie near the 
thresholds (Pev, Papu-1, Papu-2) used in the driving commands, and as some 
approximations and data filtering are considered upon deriving the 
power thresholds, it will result in a different driving mode than that 
chosen by DP.

Optimized adaptive RB controller

The engine fuel consumption comparison results under the DP, 
Opt. RB and Opt. A-RB controllers, over three and five repeated WLTP 
cycles, are presented in Figure 21. 

Figure 21 shows that if the thresholds of the WLTPbaseline cycle (Opt. 
RB) is used for the modified cycles, deviations in optimal FC results 

range from 6% for an RV of 0.9 to 22% for an RV of 0.6. However, using 
the Opt. A-RB controller, deviations from optimal FC results range 
from 2% for an RV of 0.9 to a maximum of 5% for an RV of 0.6. These 
results highlight the need for an Opt. A-RB controller in case of traffic 
changes in the scheduled route to keep FC results close to optimal. Such 
an optimization would prove extremely useful for everyday commutes 
where a small improvement in fuel economy would lead to large long-
term fuel saving.

These results were confirmed by repeating the same procedure for 
five repeated WLTPs, which yielded equivalent results. The battery 
SOC variation, for three repeated WLTPs, at a VR of 0.9 is shown in 
Figure 22, which highlights how the Opt. RB controller leads to an 
early depletion of the battery energy and then switches to the basic RB 
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Figure 22: Battery SOC comparison between DP, Opt. RB, and Opt. A-RB 
control over three repeated WLTPs with VR=0.9.

control for the rest of the trip. This, in turn, explains the higher FC 
results compared to the Opt. A-RB is shown in Figure 21.

Conclusion
This paper presents a systematic methodology to powertrain 

modeling practitioners in order to develop an optimized RB controller 
based on the global optimization technique DP. The study incorporates 
a series PHEV and the main application of this study is recurrent trips 
that may represent homework commutes. The optimal control strategy 
chosen by DP over repeated WLTP drive cycles, covering distances up 
to 118 km, is analyzed and emulated by a set of rules used by the RB 
controller. A blended CS/CD mode of the battery energy was observed 
to be optimal in terms of fuel savings where the electric energy is 
conserved until the end of the trip. The proposed controller is further 
adapted to consider variation in trip distance and traffic intensity 
along the road. The proposed Opt. A-RB controller shows a promising 
powertrain components behavior and fuel consumption compared to 
DP. The proposed controller combines the optimality feature of global 
optimization techniques and ensures real-time implementation as 
it has a very low computational time compared to DP. However, it is 
important to note that optimization was done based on repeated WLTP 
drive cycles and as such the results are only applicable to that specific 
repeating route profile. However, the same methodology can be used to 
optimize the energy management strategy for any drive cycle.

Appendix
Table 5.
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