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Achieving high levels of selectivity is one of the most daunting 
challenges of synthetic chemistry. In chemical synthesis, the term 
“selectivity” refers to the discrimination displayed by a reagent, when 
it reacts with two different reactants or functional groups. Highly 
selective reactions proceed with minimal reliance on protecting 
groups and contribute to both atom and step economy. Biological 
and synthetic systems operate somewhat differently when it comes 
to impose selectivity in chemical transformations. In nature, the 
biological catalysts, more particularly porphyrins such as cytochromes, 
are responsible for catalyzing oxidation-reduction processes and 
electron transfer reactions on which all forms of life are dependent. 
These enzymes are tailored towards a specific substrate and work with 
high levels of stereo-, regio- and chemoselectivity. However, high price, 
stability and bulk availability issues limit their practical utility. 

Phthalocyanines (Pcs) have structural similarity with porphyrins 
and are very stable π-conjugated macrocyclic compounds that can 
form complexes with almost all metals and offer a high architectural 
flexibility in structure. Due to their greater stability than porphyrins, 
metal phthalocyanines (MPcs) attract great attention for their 
applications as catalysts for selective organic transformations including 
oxidation-reduction processes and electron transfer reactions. 

Chauhan et al. have utilized CoPc for the selective reduction of 
flavones and isoflavones with sodium borohydride as reducing agent 
[1,2]. The mechanistic study revealed the involvement of electron 
transfer mechanism through the formation of hydridocobalt (III) 
complex. Our group employed phthalocyanine complexes of Fe, Co, 
Cu and Zn for chemo- and regio-selective reduction of nitroarenes 
to corresponding amines tolerating a large range of reducible 
functional groups such as acid, amide, ester, halogen, lactone, nitrile, 
N-benzyl, O-benzyl, hydroxy and heterocycles [3-5]. The mechanistic
investigation on Co(II)Pc catalyzed reduction showed the formation
of Co(I)Pc [4].  However, in another study on Co(II)Pc catalyzed
chemo-selective reductive amination of carbonyl compounds using
diphenylsilane as reducing agent, the involvement of a different
mechanism was disclosed [6]. The Lewis acidic character of Co(II)Pc
was found to be responsible for imine activation via a Lewis acid-base
interaction. Ni(II)Pc showed excellent activity towards the selective
reduction of carbonyl compounds [7]. High regio-selectivity in the
reduction of dicarbonyl compounds was remarkable, which was
observed for the first time.

Sorokin et al. have reported selective oxidations of phenols and 
condensed aromatics to quinones and alkynes to α,β-acetylenic 
ketones mediated by supported iron phthalocyanine complexes [8]. 
They reported a very different mechanistic features consistent with 
involvement of iron phthalocyanine centered species and free radicals 
as evidenced by 18O labelling and kinetic isotope effect studies. In a bio-
inspired approach, they further reported μ-nitrido iron phthalocyanine 
catalyzed oxidation of benzene for the formation of benzene oxide 
using H2O2 [9]. Contrary to this, replacing H2O2 with t-BuOOH 
resulted in industrially important selective oxidation of alkylaromatic 
compounds such as toluene or xylene to corresponding acids [10]. In 
addition to this, selective oxidation of various challenging substrates 
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such as cyclooctene, cyclohexene, styrene etc. have also been reported 
[11]. 

Some other examples of catalytic applications of MPcs include 
AlPc catalyzed cyanosilylation of aldehydes and ketones [12,13], PdPc 
catalyzed Suzuki and Heck coupling reactions [14] and CoPc catalyzed 
oxidation of alcohols and thiols [15]. MPcs have also been utilized 
in several photocatalytic transformations such as degradation of 
pollutants, oxidation of alkanes and alkenes, ene reaction etc. [16-18].  

Although several catalyzed synthetic methodologies are being 
developed, controlling reaction selectivity still stands as one of the 
major challenges in organic synthesis. In this regards, these recent 
advances clearly evidenced the promising future of MPcs in catalyzing 
challenging organic transformations in which high selectivity is 
required. Currently, visible light absorbing photocatalysts are emerging 
as powerful tools in synthetic organic chemistry in which their electron/
energy transfer potential is being utilized for sensitization of organic 
molecules. In this regard, MPc photosensitizers, which strongly absorb 
in the visible region and have long triplet lifetime, have great potential 
to be developed for efficient photocatalytic reactions.
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