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Alzheimer’s disease (AD) is the most common form of senile 
dementia that affects 5.4 million Americans, and at least $183 billion 
was spent in 2011 on management of AD and related dementia patients. 
The situation is worsening as our aging population is burgeoning. By 
2050, the projected number of AD patients could range from 11 to 
16 million people in the United States alone if neither effective cure 
nor preventive measure for AD is identified. As such, AD has quickly 
become a pandemic and exacted a huge socioeconomic toll [1]. The 
National Alzheimer’s Project Act (NAPA) that has been passed by the 
Congress and signed by the President Obama is merely an urgent call 
for fighting these debilitating medical conditions.

AD is manifested by a gradual onset of a progressive and irreversible 
cognitive decline. Memory impairment appears in the earliest stage of 
the disease followed by motor and sensory impairment in the later 
stages [2]. AD is a genetically complex disease. The majority of AD cases 
are sporadic while 5-10% of cases are early-onset familial AD (FAD) 
with an autosomal dominant inheritance pattern. The neuropathology 
of AD is characterized by the accumulation of insoluble Aβ amyloid 
peptides, neurofibrillary tangles (NFTs, the misfolded microtubule-
associated tau protein), neuropil threads, and neuronal losses in 
postmortem AD brains [3,4].

As shown in the Figure 1 from one of our recent review paper [5], 
Aβ amyloid peptides (39-43 amino acid residues, ͌ 4 kDa), the main 
constituents of both senile plaques and cerebrovascular amyloid 
deposits [3,4], are generated from a much larger metalloprotein- 
amyloid precursor protein (APP) [6-8]. APP cleavage by α-secretase 
generates neurotrophic APP(s), while its synergistic cleavage by β- 
and γ-secretases leads to production of a pool of Aβ peptides with 
carboxyl-terminal heterogeneity [9]: Aβ1-40 (40 amino acid residues) 
is the major soluble Aβ species, which is found in the CSF at low 
nanomolar concentrations [10]; Aβ1-42 (42 residues) is a minor Aβ 
species, but more neurotoxic than Aβ1-40, and is heavily enriched in 

interstitial plaque amyloid. However, the amyloid cascade hypothesis 
remains to be fully validated as AD is a polygenic and multifactorial 
complex disease [11]. Although exact AD etipathology remains 
to be fully elucidated, brain Aβ amyloidosis is still considered to be 
one of AD neuropathological hallmarks. A recent genetic study has 
identified a coding mutation (A673T) in APP gene. This mutation is 
close to β-secretase action site, and it can engender 40% reduction in 
Aβ amylodosis and protect against AD and cognitive decline in non-
AD seniors. This provides further support for the essential role of Aβ 
amyloidosis in AD pathology [12]. However, environmental risk factors 
that directly interact with AD pathogenic pathways and contribute to 
AD pathophysiology are not well studied [11].

Numerous experimental data indicate that abnormal brain metal 
metabolism is intimately involved in AD pathology [11,13-17]. The gene 
expression profile of AD brain implicates the dysregulation of cerebral 
metal metabolism [18]. Compared to age-matched controls, gene 
expression levels for metal regulatory proteins such as metallothionein 
III (MT-III) and metal regulatory factor-1 (MTF-1) decreased more 
than 4-fold in AD brain [19]. Moreover, MT-III protein concentration 
was reduced in AD brain [20,21]. In addition, biometals such as Fe, 
Cu, and Zn interact with Aβ amyloid peptides and APP in vitro, 
implying that they may promote Aβ amyloid pathogenesis in vivo 
[11]. Moreover, it has been recently demonstrated that low levels of Cu 
exposure disrupt cerebral Aβ homeostasis by influencing its production 
and clearance [22]. These data indicate that exposure of metals such 
as Cu could be an environmental risk factor that contributes to AD 
pathophysiology. As such, Alzheimer’s metallobiology has emerged as 
an active field in AD research. Based on brain metal hypothesis [23], a 
modified 8-hydroxyquinoline analogue and a Cu/Zn ionophore- PBT2 
has shown positive effects in a Phase IIa double-blind, randomized, 
placebo-controlled clinical trial [24].

Our group has first shown that the 5’-untranslated region (5’UTR) 
of APP mRNA has a functional metal-response element [25], and Fe, 
Cu, and Zn ions are able to interact with APP directly and promote its 
translation via its 5’UTR of mRNA in a dose-dependent manner [26]. 
Thus, 5’UTR of APP mRNA seems likely to be a key target intimately 1  18
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Figure 1: Schematic illustration of APP protein and its Aβ product after cleavage 
by α-, β- and γ-secretases. β- and γ-secretase cleaves on the N- and C-terminal 
ends of the Aβ region respectively. γ-Secretase cleavage yields a 39-43 amino 
acid product. Long and more fiblillogenic and neurotoxic 42-43 amino acid Aβ 
species are implicated in AD pathogenesis and may seed the formation of Aβ40 
fibrils. Mutations in the APP gene and in genes encoding proteins known as 
presenilins increase the production of long Aβ.
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associated with metal-mediated APP processing and Aβ homeostasis. 
Indeed, our recent in vitro study further indicates that blocking of 
5’UTR of APP mRNA attenuates neural APP and Aβ production 
[27]. It further suggests that the 5’UTR of APP mRNA, which is 
a metal-responsive regulator for APP translation, may potentially 
influence Alzheimer’s Aβ amyloid pathology in vivo. However, further 
studies are needed on in vivo effects and associated redox stress, 
neuroinflammatory responses, and cognitive function deficits of metals 
such as Cu upon the 5’UTR of APP mRNA to fully appreciate potential 
therapeutic value of this novel and potentially druggable target. 
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