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Global Climate Change Affecting Plant Fitness and 
Reproductive Success

Anthropogenic activities that contribute to global climate change, 
thereby affecting plant growth and survival are carbon dioxide 
(CO2), ozone (O3), and temperature. There has been unprecedented 
increase in atmospheric CO2 concentration (present atmospheric CO2 
concentration is 387 ppm), 40% more than the levels before industrial 
revolution [1] and is expected to increase to 500-900 ppm by the 
end of the twenty first century [2]. The concentration of O3 in lower 
troposphere has increased to 20-50% at an average of 38% since pre-
industrial era [3]. The Intergovernmental Panel on Climate Change 
(IPCC), forecasts a temperature rise of 2.5 to 10 degrees Fahrenheit over 
the next century (http://climate.nasa.gov/effects). Plant photosynthetic 
rates are influenced by these factors which in turn affect subsequent 
allocation of carbohydrates, cellulose, lignins, tannins pool, which in 
long term affect CO2 sequestration [4]. Global climate change may 
directly alter plant fitness, as well as alter the reproductive success of 
plants and their interactions through impacts on flowering phenology 
[5-8]. 

Chemical Ecology and Plant Secondary Metabolites
Plants produce an array of secondary metabolites, which are 

not directly involved in primary metabolism of plant growth and 
development. These plant secondary metabolites (PSMs) belong to 
different chemical groups such as phenylpropanoids, flavonoids, 
terpenoids, and alkaloids. Chemical ecology is an area that deals with 
studies of interactions between organisms and their biotic and abiotic 
environment that are mediated by chemicals. Stahl (1888) is known as 
an early pioneer of chemical ecology who proposed that the various 
chemical protective means of plants were shaped and optimized 
under the selection pressure of the animal kingdom that surrounds 
the plants [9]. Fifty four years ago, PSMs were placed in an ecological 
context by Fraenkel [10]. The ability of plants to synthesize secondary 
compounds has been selected throughout the course of evolution in 
different plant lineages when such compounds addressed specific needs 
[11]. For example, floral scent volatiles and pigments were evolved to 
attract insect pollinators and thus enhanced fertilization rates. The 
ability to synthesize toxic chemicals was evolved to ward off pathogens 
and herbivores or to suppress the growth of neighboring plants which 
involve deterrence/anti-feedant activity, toxicity or acting as precursors 
to physical defense systems [11-13]. 

PSMs vis-à-vis Global Climate Change
Stressful environments including adverse climatic effects (e.g. high 

temperature, elevated CO2 concentration, high doses of UV radiations 
etc.) may lead to altered production of PSMs due to allocation of fixed 
carbon to secondary metabolism instead of channelizing it for primary 
metabolic functions required for growth and survival [14]. The role 
of PSM among a multitude of anthropogenic forces that influence 
ecosystems in a global scale is still less recognized. Interactions among 
organisms and their environment are mediated by PSM at different 

levels of ecological organization. Therefore, genes encoding for PSM 
biosynthetic enzymes can have effects from individual organisms to 
all the way to global environmental processes.  Lindroth (2010) has 
extensively detailed on the effect of global climate change on PSMs [4]. 
Elevated O3 significantly increased concentrations of phenolic acids and 
flavonoids in different tree species [15]. Studies have been undertaken 
to understand the role of either increasing CO2 or temperature on 
secondary compounds including isoprene, terpenes, tannin, flavonol 
and/or phenolic production [16-20]. Lignin and tannin concentrations 
in trees have been shown to be increased by high CO2 levels [4,21].

Studies on the effects of high temperature and enriched CO2 on 
phenolic composition of three deciduous tree species revealed that the 
level of total phenolic compounds decreased under high temperature 
but increased under enriched CO2 [22]. Interestingly, there was no 
effect on phenolic compounds when high temperature and enriched 
CO2 were combined [23]. Moreover, it has been reported that high 
temperature resulted in a significant decrease of apple peel anthocyanin 
concentration through modulation of the anthocyanin regulatory 
complex [24]. Albert et al. showed that increased phenolic composition 
of Arnica montana is associated with lower temperature [25]. Ultraviolet 
radiation (UV) is also influencing the production of different secondary 
metabolites such as phenolics, flavonoids, alkaloids, terpenoids, 
and glucosinolates [26]. UV-B radiation enhanced the rosmarinic 
and carnosic acids concentrations in rosemary plants [27]. Contents 
of peppermint flavonoids; eriocitrin, hesperidin, and kaempferol 
7-O-rutinoside have been reported to be increased by UV-B induction 
[28]. UV-A and UV-B radiation induction exhibited increased content 
of caffeoylquinic acids and iridoids in Lonicera japonica Thunb [29]. 
However, the effect of global climate change on PSM does not show 
any definitive trend and appear to be specific to plant species and 
environmental stress under study [30]. Detailed studies with focus on 
individual and combination of stresses will provide a clearer picture. 

Importance of Metabolomics in Ensuring Food Security
Feeding the world by next 50-100 years is a great challenge for 

scientists and people involved in food and agriculture industry, and 
particularly the challenge is even more difficult keeping in mind the 
ever-increasing population and limited availability of agricultural 
land. Scientist from various fields, which include but are not limited 
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to agriculture, breeding and biotechnology are putting their hands 
together to meet the challenge. Biotechnological interventions that 
utilize various OMICs approaches (e.g. genomics, transcriptomics, 
proteomics, metabolomics etc.) have an important role to play along 
with classical agricultural approaches. Next generation sequencing and 
other OMICs technologies has enabled to sequence large and complex 
genomes in very less time in a very precise manner. However, assigning 
function to such a large pool of genes is yet another challenging task. 
Post-genomic era depends heavily on many related technologies to 
bridge the information gap however, none delivers an effective route to 
assign exact function of genes. A number of post-transcriptional and 
post-translational modifications at gene and enzyme level are involved 
and therefore, none of the approach leads to the identification of genes 
with final outcome with regard to phenotypic traits. Metabolomics is 
the study of complete set of metabolites in a cell, organ or an individual 
and serves as an excellent tool to bridge the information gap [31]. It 
is accomplished by analytic tools such as gas-chromatography or 
liquid-chromatography and is comparatively cheaper, rapid and 
has wide range of applications than other OMICS approaches. Since 
metabolites are close to phenotype and are the actual representatives 
of any visible change, metabolomic profiling of crops, in response to 
climate change will provide useful insights into genetic mechanisms 
of plants adaptation. The information obtained from the systematic 
metabolomic studies on response of plants to climate change can be 
exploited to identify candidate genes responsible for conferring specific 
traits of stress tolerance. The identified stress induced metabolites can 
be mapped on the metabolic pathways to pinpoint their rate limiting 
catalytic enzymes. Further, the publically available genome databases 
are searched to identify respective genes of the rate limiting enzymes. 
These genes can be further exploited to alter or divert the metabolic 
flux of plants for increasing the production, nutrition versatility 
and/or the adaptive plasticity of the plants by means of either cis- or 
transgenic technologies. Different parameters of climate change studied 
alone and/or in combination, will provide significant information on 
metabolomic adjustments in response to environmental variables that 
can be used to prepare predictive models and interaction networks. 
This will help the scientific community and policy makers to design 
strategies to mitigate the adverse climatic effects. Especially it will be of 
great value for application in crop plants, wherein genes can be mapped 
in the quantitative trait loci (QTLs) [32], which further can be used for 
breeding programmes to mitigate the adverse effects of climate change. 
Since metabolites affect the complex organizations of ecosystems, it will 
help us predict the ecosystem organization in response to global climate 
change. Hence, there is a need to conduct systematic studies in order to 
get deeper insights and to develop a wholistic and rationale approach 
wherein, metabolomics can play a pivotal role.
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