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Abstract
Metabolic syndrome (MetS) is now recognized as a big threat for human health. It has been a problem in developed 

countries for decades and also emerging similarly in developing countries. It has been also called as “Syndrome X”, 
“Deadly quartet”, “Reaven’s syndrome”. Essentially these are of the same clinical status, in which insulin resistance 
is the common condition. In such condition hyperinsulinemia occurs, which may have potential influence on other 
organs and tissues, including kidney – glomeruli and tubules - , cardiovascular systems, liver, muscles. This review 
will focus on the influence of MetS on the point of insulin resistance and its influence of kidney, especially proximal 
tubules and glomeruli.
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The history and the definition of metabolic syndrome
The status like MetS was reported as early as in 1920s [1,2]. The 

word MetS itself was first used by Haller [3]. He mentioned about 
the risk of atherosclerosis associated with obesity, diabetes mellitus, 
hyperlipoproteinemia, hyperuricemia, and steatosis hepatis.

Reaven described that insulin resistance is the key factor of this 
phenomenon [4]. He proposed that insulin resistance is closely related 
to impaired glucose tolerance, hyperglycemia, hyperlipidemia and 
hypertension. He called this as “Syndrome X”. Then, Kaplan proposed 
the idea “Deadly quartet”, upper-body obesity, glucose intolerance, 
hypertriglyceridemia, and hypertension [5]. 

WHO first made criteria for MetS in 1999 [6], consisting of obesity, 
hyperlipidemia, hypertension, hyperglycemia, insulin resistance and 
albuminuria [6]. Some other criteria have been published later, but it 
seems to be difficult to adapt the single criterion perfectly to all people, 
as there are genetic and environmental differences among people. 

Metabolic syndrome and insulin resistance, hypertension

The criteria of MetS are still hotly debated [7,8], but insulin 
resistance is recognized as one of the key factors of MetS. The 
definitions of the American Association of Clinical Endocrinology 
(AACE) [9], WHO [6] and the European Group for the study of Insulin 
Resistance (EGIR) [10] focus on insulin resistance, whereas the widely 
used definitions such as, the National Cholesterol Education Program 
Adult Treatment Panel III criteria (NCEP-ATP III) [11], its modified 
version the American Heart Association / National Heart, Lung, and 
Blood Institute criteria (AHA/NHLBI) [12,13] and the International 
Diabetes Federation criteria (IDF) [14] rather focus on waist 
circumference. Nevertheless, as Reaven described, insulin resistance is 
related to pathogenesis of hyperglycemia, fatty acid dysregulation, and 
hypertension [4]. 

As for salt-sensitive hypertension, the relationship with MetS 
and insulin resistance has been pointed out. Uzu and colleagues have 
reported associations between the presence of MetS and salt-sensitive 
hypertension [15]. In essential hypertension, there are several reports 
that describe impaired insulin signaling [16-22]. McFarlane and Sechi 
showed direct correlation between plasma insulin levels and blood 
pressure in such patients [17,18]. Genetic background is thought to be 
important in both essential and salt-sensitive hypertension; it has been 
observed that offspring of hypertensive parents has abnormal glucose 
metabolism. As the relationship between hyperinsulinemia and 
hypertension is not seen in secondary hypertension, insulin resistance 

and hyperinsulinemia may not be consequences of hypertension 
[18,19]. 

In human the anti-natriuretic action of insulin is seen [23], which 
is supportive for the idea that hyperinsulinemia may contribute to the 
onset of hypertension via sodium retention in the kidney [24,25]. On 
the other hand insulin itself stimulates nitric oxide (NO) production, 
which relaxes the vascular tone through the phosphoinositide 3-kinase 
(PI3K) / Akt pathway [21,26], suggesting that hyperinsulinemia 
itself may not directly induce hypertension in the absence of insulin 
resistance [27]. However, in insulin resistance condition, it has been 
observed that the NO production stimulated by insulin is attenuated 
[28]. The resultant attenuated vasodilatation by insulin may underlie 
the onset of hypertension in insulin resistance condition.

In molecular aspects, there are some types of inherited hypertensions, 
e.g. Liddle’s syndrome [29] and pseudohypoaldosteronism type II or 
familial hyperkalemic hypertension (FHH) [30]. Although they never 
represent as common diseases, the investigations of the mechanism 
of these diseases have led to clarify novel signal transduction systems 
that may play important roles in the pathogenesis of MetS and 
hypertension. Liddle’s syndrome is due to mutation in epithelial Na 
channel (ENaC) in the distal tubule [31], whereas FHH is due to the 
abnormality in kinases (with-no-lysine [K] kinase; WNK 1~4) [32]. In 
addition to these distal nephron Na transport systems, however, the Na 
transport in proximal tubules may be also related to the pathogenesis 
of hypertension, as will be discussed below.

Insulin effect on renal proximal tubule and sodium transport

Insulin exerts its action on kidney, especially the whole nephron. 
As to proximal tubule, insulin accumulates in the proximal tubule 
[33]. In rabbit insulin binds to various segments of nephron [34], 
whereas insulin accumulates strongest in the proximal tubule of rat 
nephron [35]. Insulin is delivered to proximal tubule by two ways: by 
glomerular filtration and subsequent reabsorption from tubular cells, 
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and by diffusion from peritubular capillaries and subsequent binding 
to insulin receptors [36].

So far it is known that insulin stimulates sodium reabsorption in 
the proximal tubule [23]. Insulin also stimulates volume absorption 
in rabbit proximal tubule, via basolateral side [37]. As proximal 
tubules reabsorb about seventy percents of total sodium filtered 
from glomeruli, the stimulation of proximal sodium reabsorption by 
insulin may well contribute to the increase of total fluid volume in the 
individual, leading to hypertension.

Gesek and Schoolwerth showed that in rat proximal tubule the 
activity of Na+-H+ exchanger type 3 (NHE3) is increased by insulin 
[38]. As NHE3 plays quite a significant role in the apical side of 
proximal sodium reabsorption, this effect of insulin is quite important. 
The cellular mechanism of insulin action was investigated by Lee-
Kwon et al. [39,40] and Shiue et al. [41]. It is not still totally clarified 
but Akt seems to play a critical role in the PI3K mediated translocation 
of NHE3 into apical membranes of proximal tubular cells.

Ruiz et al. showed that insulin stimulates Na+-HCO3
- cotransporter 

(NBCe1) in the basolateral side of proximal tubule [42]. Na+-K+-
ATPase also plays a role in the Na+ reabsorption in the proximal tubule 
and is a target of insulin stimulation [43, 44]. 

Difference of insulin signals between organs – tubules and 
adipose tissues

As described above, insulin has a significant effect on renal proximal 
tubule, but its mechanism is still under investigation. As for sodium 
transport we have examined the insulin signal transduction mechanism 
involving IRS1 and/or IRS2 [45]. In wild-type mice and IRS1-/- mice 
insulin significantly stimulated Na+-coupled HCO3

- absorption but 
the stimulation was significantly attenuated in IRS2-/- mice. Moreover 
the Akt phosphorylation induced by insulin stimulation, which might 
mediate the effect of insulin on proximal absorption, was preserved 
in IRS1-/- mice but significantly reduced in IRS2-/- mice. In proximal 
tubule the tyrosine phosphorylation of IRS2 by insulin seems to be 
more prominent than that of IRS1, consistent with a major role of 
IRS2 in insulin-mediated transport stimulation in proximal tubule. 
Signaling defects specific to IRS1 are frequently showed in insulin 
resistance [46-49]. Our results suggest that the stimulation of proximal 
tubule transport by insulin may be preserved even in insulin resistance.

In fat tissue, which is one of the common tissues that insulin 
resistance arises, IRS1 seems to play a major role in the insulin signal 
transduction. Hotamisligil and colleagues first described that in mice 
adipose tissue TNF-α plays an important role in the development 
of insulin resistance [50]. TNF-α induces inflammation, leading to 
inhibition of IRS1/2 signal transduction pathways [51-53], and may 
inhibit the insulin signaling through the serine phosphorylation of 
IRS1 [54]. It is now established that IRS1 is phosphorylated at serine 
residues by various kinases [51]. These kinases seem to interfere with 
IRS1 functions, resulting in inhibition of insulin-receptor signaling 
and alteration in insulin action [55-57]. 

As described here, IRS2 signaling seems to be prominent in the 
proximal tubule, whereas IRS1 signaling seems to be major in adipose 
tissue. This difference in signaling pathways could explain the different 
responses to insulin between kidney and adipose tissue. Especially, 
even in insulin resistance, insulin signaling seems to be preserved in the 
proximal tubule, stimulating sodium and fluid reabsorption followed 
by hypertension. This may explain one of the important pathogenesis 
of hypertension under insulin resistance condition.

On the contrary in the glomeruli the insulin signal transduction 
seems to be reduced as in adipose tissue, as will be described in the 
next chapter.

Insulin effect in animal models: difference between glomeruli 
and tubules

Several rat models have been used to investigate the insulin effects 
in MetS condition and the mechanism of insulin resistance. One of 
the rat models is Otsuka Long-Evans Tokushima Fatty (OLETF) rat 
[58]. This rat has a defect in cholecystokinin -A (CCK-A) receptor [59], 
resulting in obesity due to overeating [60]. Compared to its counterpart 
control rat (Long-Evans Tokushima Otsuka rat; LETO rat), OLETF 
rat begins accelerated weight gain at 5 weeks of age, leading to about 
40% excess of weight than LETO rat. Moreover, OLETF rat develops 
hyperglycemia and type II diabetes mellitus at about 18 weeks of age, 
resulting in insulin deficiency after 65 weeks of age [58]. 

Our group investigated whether the effect of insulin on the proximal 
tubule of OLETF rats is preserved or not [61]. We also investigated 
the adipose function under insulin resistant condition in these rats. 
The stimulation of glucose uptake into adipocytes by insulin was 
severely impaired in OLETF rats compared to LETO rats, indicating 
that OLETF rats develop insulin resistance in adipose tissue. In sharp 
contrast, the stimulation of NBCe1 by insulin was comparable in both 
rats. In OLETF rats Akt phosphorylation by insulin was preserved in 
renal cortex tissue but severely reduced in adipocytes. These results 
suggest that in general obese condition, such as MetS and/or insulin 
resistance, hyperinsulinemia may contribute to the emergence of 
hypertension by facilitating renal Na absorption. 

In glomeruli the signal transduction pathway by insulin seems 
to be differently affected from that of proximal tubules, rather as is 
in adipose tissue. King and colleagues have recently clarified that the 
responses to insulin in rat models of diabetes and obesity – Zucker lean 
rats and control SD rats - are different between glomeruli and tubules 
[62]. In the glomeruli insulin-induced phosphorylation of IRS1, Akt, 
endothelial nitric oxide synthase (eNOS), and glycogen synthase kinase 
3α (GSK3α) were all inhibited in glomeruli but not in the tubules. The 
defect in glomerular insulin signaling was similar to that in all other 
vascular tissues when exposed to insulin resistance and diabetes 
[63,64]. On the other hand, renal tubules seemed to be selectively 

Figure 1: Effects of MetS on insulin signaling in the kidney. In the glomerulus 
insulin resistance induced by and/or concomitant with MetS leads to the 
impairment of insulin signaling in the glomerulus. This leads to diabetic 
nephropathy probably due to podocyte injury. In contrast in the proximal 
tubule insulin signaling is preserved, and hyperinsulinemia triggers increment 
of proximal reabsorption and hypertension.
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protected from developing insulin resistance. This conclusion seems to 
be consistent with the preserved insulin action on proximal tubule in 
OLETF rats [61].

One of the organ dysfunction elicited by MetS should be diabetic 
nephropathy (DN) [65]. The pathogenesis of DN is still under 
investigation. As to type I diabetes, the presence of insulin resistance 
seems to be necessary for the onset of DN [66]. Coward and colleagues 
have shown that the glomerular podocyte plays the key function in 
insulin signal pathway [67]. They created two types of mice model with 
podocyte-specific insulin receptor knockout and showed that insulin 
rapidly and directly signal to the podocyte, and directly and specifically 
reorganize the actin cytoskeleton of podocytes. It has been known 
that the main damaged cell type in human DN is podocytes with foot 
widening [68,69]. Other group showed that the similar knockout mice 
(podocyte insulin-receptor knockout) developed albuminuria and 
had histological changes characteristic to DN, e.g. loss of podocyte 
morphology, and even podocyte apoptosis [70]. As podocyte loss is an 
important feature of DN that occurs in the relatively early stage and 
is a good predictor of disease progression [69,71], investigations of 
the insulin effect on podocyte may help develop the new strategy for 
prevention and treatment of DN.

Does improvement of insulin resistance ameliorate kidney 
function?

The relation between MetS and kidney function has been vigorously 
investigated. Several studies suggest that the improvement of lifestyle 
and use of drugs may ameliorate kidney function. For example, 
exendin-4, one of the anti-diabetic drug glucagon-like peptide-1 
analogues has been suggested to ameliorate diabetic nephropathy [72]. 
Other anti-diabetic drug, peroxisome proliferator- activated receptors 
gamma (PPAR-γ) agonist, was proved to ameliorate mesangial 
expansion, improve GFR, and reduce albuminuria [73-75]. As for 
life style it has been shown that in MetS subjects exercise induced 
improvement in renal function [76]. However, there has been no clear 
evidence showing direct relation between kidney function and insulin 
resistance. Further investigations will be required to solve this issue.

Conclusion
MetS is the main life-threatening disorder in developed and 

some developing countries. It is also a menace to kidney probably 
due to concomitant insulin resistance and following diabetes and 
hypertension. The criterion of MetS is still not completely established 
but insulin resistance is certainly a key factor of MetS. 

In insulin resistance condition, the signal transduction pathway of 
insulin is impaired in most organs and tissues. However, the situation 
may be different in proximal tubule. In proximal tubules the insulin 
signaling pathway is probably preserved and, hence, hyperinsulinemia 
may stimulate proximal transport. The resultant sodium retention, 
together with the impaired vasodilatation by insulin, may induce 
hypertension. In contrast, glomerulus may develop insulin resistance 
like other vascular system. In particular, podocytes seems to be mainly 
affected by insulin resistance, responsible for the histological change 
characteristic to DN. Figure 1 summarizes the potential effects of MetS 
on insulin signaling in the kidney.

To prevent kidney impairment by insulin resistance, two different 
approaches may be required; for proximal tubules it is necessary to 
prevent the excessive stimulation of reabsorption by insulin, whereas 
for glomerulus the prevention of podocyte injury may require the 
improvement of insulin signaling.
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