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Abstract

Although aflatoxins are unavoidable toxins of food, many methods are available to control them, ranging from
natural detoxifying methods to more sophisticated ones. The present review englobes the main characteristics of
Aflatoxins as mutagens and carcinogens for humans, their physicochemical properties, the producing fungi,
susceptible crops, effects and metabolism. In the metabolism of Aflatoxins the role of cytochromes and isoenzymes,
epigenetics, glutathione-S-transferase enzymes, oncogenes and the role of aflatoxins as mutagens of the tumor
suppressor gene p53, and the Wnt signaling pathway are briefly explained, as well as these toxins as biomarkers.

The last section includes the Aflatoxin control methods, from the protection of the crop from the Aspergillus fungi,
the biocontrol solution, the AFB1-DNA adduct control with the natural repair rates of adduct removal, induction to
resistance to AFB1, the detoxification enzymes, recombinant yeasts, pre-exposure to Aflatoxin M1, the inhibition of
AFB1 lesions by different compounds, chemoprevention and protective chemical compounds, cruciferous
vegetables, dietary dithiolethiones, glucoraphanin, indol-3-carbinol, oltipraz, phenols (butylated hydroxytoluene and
ellagic acid), indomethacin, selenium, natural nutrients, coumarin chemoprevention, cafestol and kahweol, terpenes
and monoterpenes, grapefruit juice, vitamins, traditional Chinese medical plants (Oldenlandia diffusa and Scutellaria
barbata), chlorophyllin, probiotic bacteria and additives as aluminosilicates and glucomannans are described here.
Finally, the aflatoxin international legislation was briefly described.
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Introduction
The FAO [1] of the United Nations estimates that 25% of the world’s

food crops and their derivatives are contaminated with mycotoxins,
which threaten human health [2]. Moreover, the Center for Disease
Control from USA [3] estimates that more than 4.5 billion people in
the developing world are exposed to aflatoxins (AFs).

The contamination of food supplies by naturally occurring toxins is
of particular concern in the rural communities of developing countries
[4]. AFs are the most frequent and toxic mycotoxins, and their
metabolism and mechanisms to control them are of upmost
importance.

Aflatoxins
AFs are secondary metabolites, polyketides that chemically

correspond to a bisdihydrodifuran or tetrahydrobisfuran united to a
coumarin substituted by a cyclopentanone or a lactone [5-7]. AFs are
divided into two subgroups [6,8,9]:

a) Bisfuran-coumarin-cyclo pentanons, which include AFs of series
B (AFB1, AFB2, AFB2a), M (AFM1, AFM2, AFM2a), Q (AFQ1), P
(AFP1), and aflatoxicol (AFL) that interconverts with AFB1.

b) Bisfuran-coumarin-lactones, which contain AFs of series G
(AFG1, AFG2, AFG2a).

Only AFB1, AFB2, AFG1 and AFG2 are naturally synthesized by
toxigenic fungi. The other AFs (M1, M2, P1, Q1, G2a, B2a and AFL) are
products of microbial or animal metabolism [9-13].

The liver of animals protects the organism by lowering the toxicity
of AFB1 via the addition of a OH- group to form hydroxylates (AFM1,
AFP1, AFQ1, and AFL); this step make AFs soluble in water and
facilitates their disposal via urine, feces and milk. AFB1 and AFG1 have
a double bond at the 8,9 position that oxidizes and forms AFB1-
exo-8,9-epoxide (AFBO), an unstable molecule, which produces
dihydrodiol AFB1 and is linked to the N7-guanine of DNA [14] to form
active carcinogens called AFB1-DNA adducts. AFB2 and AFG2 [15]
lack a double bond, which affects their toxicity. The bond changes that
convert AFB1 to AFB2 are known [14,16], and the biotransformation
and biosynthetic routes of AFB1 have been described [17-20].

Physicochemical properties
AFs are white to yellow odorless and flavorless crystalline solids that

are soluble in organic solvents and insoluble in water. They fluoresce
when excited under ultraviolet light, are thermo-resistant, and have a
low molecular weight (MW). Furthermore, their physicochemical
properties are distinct [21,22]. AFs have high points of fusion and
decomposition temperatures in the range of 237°C (AFG2) to 320°C
(AFP1) [23,24]. Therefore, AFs are stable at temperatures present when
cooking or boiling food, milk ultrapasteurization and alcoholic
fermentation.

Acid or alkaline solutions heated to temperatures higher than 100°C
lead to decarboxylation with the opening of the lactone ring, which
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results in the loss of the methoxy radical of the aromatic ring and a loss
of fluorescence. The formation of the acid ring [25] during human
digestion [26] reverses this hydrolysis.

Lime treatment of maize disguises but does not eliminate AFs.
Oxidative and reductive agents react with AFs to change their
molecular structure and hydrogenate AFB1 and AFG1 to produce AFB2
and AFG2 [22]. In the presence of inorganic acids, AFB1 and AFG1 are
transformed into B2a and G2a [22,27]. AFB2a is 1000 times less
mutagenic than AFB1 [23].

Producing fungi
Aflatoxins are the most toxic and frequent mycotoxins. They are

produced by the mold Aspergillus spp., which belongs to the Kingdom
Fungi, Phylum Ascomycota, Order Eurotiales, Class Eurotiomycetes,
Family Trichocomaceae, and Genus Aspergillus. The main
aflatoxigenic species are A. flavus [28-31], A. parasiticus [32-39] and
A. nomius [40,41]. A. tamarii was reported to produce AFs and
cyclopiazonic acid [42].

Other reports state that A. tamarii, A. oryzae, A. versicolor,
Penicillium commune, and P. griseofulvum, as AF producers, are
proven misidentifications [43]. Aspergillus chevalieri, A. repens,
Cladosporium herbarum, Penicillium chrysogenum and Phoma
glomerata remain identified as AF producers [44].

Susceptible crops
Aflatoxins contaminate cereals (maize, sorghum, rice, barley, and

oats), oilseeds (peanuts, cottonseed, nuts, pistachios, almonds,
hazelnuts, cacao, and coconut), dry fruits (figs, dates, and raisins),
spices (black pepper, hot pepper, and cumin), and the seeds and grains
of crops before and after harvest. In the field, AFs are produced in
drought-stressed conditions.

AFs pass to meats, dairy products, eggs, etc., via microbial or animal
metabolism. Mexico was considered the country with more liver
diseases in the American continent [45], and AFs have been reported
in several natural and processed foods, such as maize tortillas [46], rice
[47], chilies [48], milk [49,50], eggs [51], chicken breast [52], etc.

Effects
AFs are dangerous toxins, and their toxicity can be ranked as

follows: AFB1>AFG1>AFG2>AFB2 [53]. AFB1 is considered the most
dangerous AF of the group and is a potent teratogen, mutagen and
carcinogen [54,55]. Exposure to AFs occurs primarily via the ingestion
of contaminated foods [56], but it is also absorbed through the skin,
and spores in the air are inhaled, causing hepatic and gastrointestinal
injuries. AFs are among the most potent Group I carcinogens to
humans [55], and they are acutely hepatotoxic and immunosuppressive
in a variety of animals [17,57-59]. AFs can cause acute or chronic
effects depending on the duration and level of exposure [60]. The
ingestion of higher doses of AF can result in acute aflatoxicosis, a
condition characterized by hemorrhage, vomiting, diarrhea, abdominal
pain, lung edema, digestive changes, hepatotoxicity, fatty and necrotic
liver [61], liver failure and death [56]. Severe acute liver injury with
high morbidity and mortality has been associated with high-dose
exposure to AF [62], and the ingestion of 2 to 6 mg/day of AFs for one
month can cause acute hepatitis and death [63,64].

Chronic low-level AF exposure can increase the risk for cancers,
mainly hepatocellular carcinoma (HCC) [65], in areas where hepatitis

B virus (HBV) infection is endemic because there is a synergism
between the HBV and AFB1 that increases the risk. Children younger
than five years remain the most vulnerable population, with exposure
damaging their immunity and causing dwarfism [66]. Other symptoms
are immunosuppression [67,68], and AFs also reduce the protection
given by vaccinations [69]. Furthermore, they cause miscarriages, fetal
malformations [70], hepatitis B and C, cirrhosis [64,71], Reye
syndrome with encephalitis and fatty liver [72], marasmus,
Kwashiorkor [73], and death [74].

The worst human outbreaks of aflatoxicosis were reported in India
[4,64,71], Kenya [3,74-78], Nigeria [79], Gambia [80], Uganda [81-83],
Swaziland [84-85], Mozambique and Transkei [86,87], Thailand
[30,88], Malaysia [89], China [59,90-93], Taiwan [94], New Zealand
[95] and the Philippines [96].

Regarding the prevalence and human exposure to AFs,
approximately 4,500 million persons living in developing countries are
recognized to be chronically exposed to largely uncontrolled amounts
of AFs [97,98].

Metabolism

Role of cytochromes and isoenzymes
Cytochrome P450 enzymes (CYPs 450) are hemoproteins and

electron carriers that catalyze or accelerate oxidation-reduction
reactions during cellular respiration [99], and they are the main
enzymes involved in the metabolic activation of AFs [100]. In the past,
CYPs 450 were considered to specifically originate from the liver, but
they are now known to be distributed throughout the body [101].
Nevertheless, the liver is the main organ that metabolizes xenobiotics
[102].

AFB1 is metabolized in the body by CYP450 isoforms such as
CYP1A1 and CYP1A2, which comprise 10% of CYP450 isoforms,
CYP3A4 (30%), CYP2Cs (20%), CYP3A5, and CYP3A7 [102] in the
fetus. AFB1 is also metabolized by glutathione S-transferase (GST) and
AFB1-aldehyde reductase, leading to reactive metabolites, some of
which can be used as AF exposure biomarkers [103].

CYP1A1 and CYP1A2 transform and activate procarcinogens as
intermediate metabolites that link to DNA and participate in the
activation of AFB1 [104-107]. In humans, the CYP1A2 isoenzyme is
encoded by the CYP1A2 gene [108].

The CYP1A2 enzyme isoform is the principal metabolizer of AF at
low concentrations, whereas CYP3A4 isoform acts as metabolizer for
high AF amounts. The accumulation of AFB and its metabolites in the
body, especially AFBO, depletes glutathione (GSH) due to the
formation of high amounts of epoxides and other reactive oxygen
species.

Inflammatory liver disease increases the expression of specific
CYP450 isoenzymes involved in AFB1 activation. The
immunohistochemical expression and localization of various human
CYP450 isoforms, including CYP2A6, CYP1A2, CYP3A4, and
CYP2B1, have been examined. Alterations in the phenotypic
expression of specific P450 isoenzymes in hepatocytes associated with
hepatic inflammation and cirrhosis might increase the susceptibility to
AFB genotoxicity [103].

A human cell line stably expressing human CYP3A4 has been used
to study its role in the metabolic activation of AFB1 and compare this
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role to those of CYP1A2 and CYP2A3 [109]. The human
lymphoblastoid cell line 1A2/Hyg was 3- to 6-fold more sensitive to
AFB1-induced mutation than the 3A4/Hol cell line. Furthermore,
3A4/HoI cells, which stably express human CYP3A4 cDNA, were 10-
to 15-fold more sensitive to the AFB1 mutation than 2A3/Hyg cells
[109].

Epigenetics
Epigenetic changes are heritable changes in gene expression that do

not involve changes to the underlying DNA sequence, i.e., a change in
phenotype without a change in genotype. Epigenetic changes refer to
external modifications of DNA that turn genes "on" or "off." These
modifications affect how cells "read" genes, resulting in changes in gene
expression, cellular differentiation and growth without changing the
genetic code itself. AFB, AFBO and other metabolites also affect
epigenetic mechanisms, including DNA methylation, histone
modifications, the maturation of microRNAs (miRNAs) and the daily
formation of single nucleotide polymorphisms (SNPs). Specifically,
AFB exposure may facilitate the process of change and induce G:C to
T:A transversions at the third base in codon 249 of TP53, causing p53
mutations in HCC [110]. AFB also promotes tumorigenesis,
angiogenesis, invasion and metastasis in HCC via epigenetic
mechanisms. Chronic AF exposure leads to the formation of reactive
AFBO metabolites in the body that could activate and de-activates
various epigenetic mechanisms, leading to development of various
cancers [103].

The effects of AFB1 intake, genetic polymorphisms of AFB1
metabolic enzymes, and interactions between nucleotides were studied
with regard to the risk of gastric cancer in Korean populations. The
probable daily intake of AFB1 was significantly higher (p<0.0001)
among gastric cancer patients than among control subjects. Only
CYP1A2 was associated with the genetic polymorphisms present in
gastric cancer. The effect of AFB1 on gastric carcinogenesis may not be
modulated by genetic polymorphisms of AFB1 metabolic enzymes
[111].

Glutathione S-transferase enzymes (GSTs)
In Phase I of metabolic processes water-soluble products are

generated. In Phase II, GSTs allow these metabolites to combine with
polar endogenous molecules to form conjugation products that are
rapidly excreted [112, 113]. This reaction increases the solubility of
dangerous compounds, allowing them to be excreted [114].

GSTs are a family of enzymes that protect the organism and are
present in Phase II of enzymatic detoxification of many electrophilic
metabolites [115,116], such as xenobiotic derivatives and endogenous
molecules (antibiotics, steroids, prostaglandins and leukotrienes)
[112], which exert carcinogenic and genotoxic effects [117].

GSTs were first purified from rat liver microsomes [115] in the
soluble fraction in the cytoplasm (cytosolic fraction), but GSTs are also
found in the nucleus, mitochondria and peroxisomes [117]. GSTs from
mammals are the best-characterized enzymes that facilitate the
detoxification route of dangerous components that conjugate with
glutathione (GSH) [113]. GSH is an important antioxidant that
prevents damage to important cellular components by reactive oxygen
species, such as free radicals, peroxides, lipid peroxides and heavy
metals [118].

Each subunit of GST features a specific linkage site (place-G) and an
electrophilic linkage site (place-H), which is less specific and reacts
with different toxic agents [118]. GSTs link to lipophilic molecules with
a molecular mass >400 Daltons (hemin, bilirubin, biliary salts, steroids,
thyroid hormones, fatty acids and drugs) and store and transport them
to the aqueous phase of the cell [114, 119].

Glutathione S-transferase and aflatoxins
AFB1 includes the reactions of enzymatic conjugation mediated by

GST to inactivate the AFBO. Spontaneously, AFBO is hydrolyzed to 8,9
dihydrodiol and conjugates with GSH to form AFB1-gluthation
transferase (AFB1-SG) [120]. The conjugate AFB-SG is the most
abundant biliary metabolite and is excreted by urine [89]. The
induction of GST and aldehyde-AFB1 reductase prevents the formation
of AF-ADN and AF-protein adducts and blocks carcinogenesis in rats
[121]. Specifically, the induction of GST prevent the union of AFB1
and ADN in different species [122]. The dietary ingestion of
antioxidants increases the levels of GST, which consequently increases
the elimination of AFB-SG in the urine of treated animals [90].

Oncogenes and the tumor suppressor gene p53
Oncogenes, such as N-ras, c-myc or c-fos, are over-expressed, but

their mutations are rare, and evidence to directly implicate these
mutations in HCC is rare [123]. A specific mutation in codon 249 of
the p53 gene is present in regions where HCC and exposure to AFs are
prevalent [124]. The mutation induced by the reactive forms of AFB1
in codon 249 of the p53 gene is a “hotspot” for the mutation induced
by AFB1, specifically the transversion GC→TA [125]. In Gambia, this
mutation was detected in the DNA of HCC patients but was rare in
control patients [126-128]. The transversion G→T or transition G→A is
produced in the third base of codon 249 of the p53 gene and in the first
or second base of codon 12 of the H-ras gene [129-134]. When rats,
mice and fish ingest an AF-contaminated diet, some proto-oncogenes
of the “ras” family are activated [135,136]. High incidences of activated
Ki-ras and N-ras have been observed in liver carcinomas and
adenomas induced by AFB1 [135].

Expression and activation of several c-oncogenes in seven
hepatocellular carcinomas from seven separate rats treated with AFB1
were examined by Northern and Southern blot analyses. Both c-Ha-
ras and c-myc transcripts were elevated at high levels in all hepatomas.
Moreover, in one of them, T2-1 hepatoma, the c-myc gene was
amplified only in a tumor part of liver without significant
rearrangement. N-ras specific transcripts were not elevated in these
hepatomas. The consistently increased expression or deregulation of
the c-myc and c-Ha-ras genes may play an important role in the
development of hepatomas induced by AFB1 [137]. When male Fisher
rats were exposed to AFB1 and AFG1, four liver tumors were induced:
three harbored activated N-ras and one exhibited the transversion
G→A in codon 12 of Ki-ras [138,139].

The identification of a specific mutation in the tumor suppressor
gene p53 in HCC in regions where AF exposure is high has helped to
identify an AF biomarker [140]. A nonsense mutation in p53, that
yields a broken, non-functional protein, provides a selective advantage
for the expansion of preneoplastic or neoplastic cells. The p53 gene
plays a molecular role in cancer and consequently serves as an
intermediate biomarker for cancer development [141].

The suppressor p53 gene is mutated in 53% of HCC cases in Mexico,
a country in which exposure to AFB1 is high, whereas in populations
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with low exposure to this toxin, mutations were identified in 26% of
HCC cases [142]. In Senegal, where people are exposed to high
concentrations of AFB1 via foodstuffs, the 249 codon mutation of the
p53 gene was found in 10/15 HCC tumors [143]. The mutation index
of the p53 gene is higher in tumors associated with HBV compared
with tumors associated with the hepatitis C virus (HCV) and non-viral
HCC, independent of AF exposure [144].

Wnt signaling pathways
The Wnt (=Wingless-related integration site in Drosophila

melanogaster) signaling pathways are a group of signal transduction
pathways that rely on proteins that pass signals from the outside of a
cell to the inside of the cell via cell surface receptors [145,146].

Wnt signaling was first identified due to its role in carcinogenesis
and embryonic development (cell fate specification, proliferation,
migration, and body axis patterning). Its role in embryonic
development was discovered when genetic mutations in proteins in the
Wnt pathway produced abnormal fruit fly embryos. The genes
responsible for these abnormalities also influence breast cancer
development, prostate cancer, glioblastoma, type II diabetes and other
diseases [145,146].

The inappropriate reactivation of the Wnt pathway as a result of
mutations in the β-catenin gene which encodes a protein that
facilitates the mobility of neoplastic cells is implicated in the
development of HCC [147]. Mutations in the β-catenin gene can
activate the transcription of Wnt target genes, such as c-myc, cyclin D1
and PPARδ. Therefore, these mutations can promote tumor
progression by stimulating cellular proliferation [147,148].

AFB1 negatively regulates the Wnt/β-catenin signaling pathway by
activating microRNA-33a (miR-33a). MicroRNAs modulate gene
expression in various cancers and cardiovascular disorders, but only a
few of microRNAs are associated with the pathology of AFB1. A
regulatory network involving AFB1, miR-33a and β-catenin in human
carcinoma cells showed that the level of miR-33a increases the
response of HCC cells to AFB1, whereas β-catenin expression
decreased in the same cells when they were treated at their IC50 values.
miR-33a decreases the expression of β-catenin, which affects the β-
catenin pathway and inhibits cell growth. AFB1 might decrease the
response of β-catenin by increasing the response of miR-33a,
promoting the proliferation of malignant cells [149].

Biomarkers
An exposure biomarker refers to the measurement of AFs, their

metabolites or interactive specific products in a compartment of the
body or fluids to assess past and present exposure. The biomarkers of
internal doses and from biologically effective doses of AF are generally
hydroxylated metabolites, and AF-DNA adducts formed from epoxide
derivatives [150].

The biomarkers identified in etiological research have been used for
preventive purposes in high-risk populations because experimental
studies have established time links between AF biomarker modulation
and the risk of disease. The early identification of AF metabolites in
human fluids [151] stimulated the development of biomarkers [152].
The availability of specific antibodies helps the detection of AF
metabolites in human urine [153-155].

AFB1 is biotransformed to various metabolites, especially active
AFBO, which interacts with DNA, RNA and various metabolic

pathways, such as protein synthesis, the glycolytic pathway and the
electron transport chain, which is involved in ATP production in cells.
AFB interacts with DNA to form AFB-DNA adducts to cause DNA
mutations and breakages.

CYP450 controls AF adduct formation in the metabolic route AFB1.
AFBO is the electrophilic metabolite that links to N7 of the guanine
residues of DNA to form 8,9-dihydroxy-8-(N7) guanyl-9-hydroxy
AFB1 adducts (AFB1-Gua), which is the most abundant [125,156,157].
The imidazol ring on the positively charged AFB1-Gua promotes the
depurination and produces an apurinic site. This ring opens to form a
chemically and biologically more stable adduct, formamidopyrimidine,
2,3-dihydro-2-(N-formyl)-2´,5´,6´-triamino-4´-4´-oxy-N-
pyrimidyl-3-hydroxy-AFB1 (AFB1-FAPY) adduct present in the DNA
replication several times [158,159].

One hour after injecting rats with AFB1, AFB1-Gua comprised the
majority of adducts, whereas the adduct AFB1-FAPY was predominant
at later time points [160]. The apurinic sites, AFB1-Gua and AFB1-
FAPY, individually or collectively act as the precursors of the genetic
effects of AFB1, and these two adducts develop the tumors.

Tumors were induced in rats to study the human Ha-ras proto-
oncogene, which is metabolically mutated by AFB1, using an in vitro
transfection of a plasmid modified with AFB1. In this experiment,
G→T transversions were identified in the first and second bases of
codon 12. The proto-oncogene Ha-ras mutated by AFB1 was identified
in its in vitro oncogenic form, but this mutation has not yet been
reported in human HCC patients exposed to AFB1 [161].

Therefore, identifying the presence of free AFs (AFB1, AFB2, AFG1,
AFG2) is important to assess a person’s exposure to AFs via food,
Furthermore, measuring the metabolic hydroxylates (AFM1, AFM2,
AFP1 and AFL) is important as a biomarker of the internal dose.
Finally, the effective biological doses in control liver and human HCC
samples as well as the presence of AFB1- Gua and AFB1-FAPY adducts
serve as etiologic agents of cancer.

Control

Protecting harvests from Aspergillus fungus
AF contamination can occur before harvest when the crop

undergoes drought stress at the grain filling stages and when wet
conditions occur during harvest periods. AF contamination increases
with insect damage, delayed harvesting and high moisture levels
during storage and transportation. Therefore, additional irrigation in
the fields and the control of insects reduces AF contamination. In
storage, AFs can be controlled by maintaining available moisture at
levels below those in the range of the growth of Aspergillus spp.
Cultural practices, such as resistant crops and competitive exclusion
using strains that do not produce AF, can block AF production.

AF destruction depends on the food water content, pH, application
of propionic acid against the fungus, presence of ionic compounds, and
electric charge. The degradation mechanism is not completely
understood, but the lactone ring opens, allowing a decarboxylation at
temperatures above 150°C that were necessary to attain partial
destruction of the toxin [22]. The effects of pH (5.0, 8.0, 10.2),
temperature (121°C, 130°C, 140°C) and heating time (5 s, 20 s, 15 min)
on mutagenic activity (assayed by Ames test) of peanut beverages
artificially contaminated with AFB1. Heat treatments at pH 8.0 were
not effective in reducing the mutagenic activity. On the other hand, the
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treatments pH 10.2, 130°C 20 s and pH 10.2, 121°C 15 min reduced the
mutagenic activity by 78% and 88%, respectively [22].

Biocontrol solution
The goal of the “Aflatoxin Control in Maize and Peanuts Project” is

to develop and implement holistic strategies to address AF
contamination in maize and peanuts. Ultimately, the project aims to
develop and scale up biological control technology interventions to
improve the health and income of farmers in Sub-Saharan Africa [3].
The Project applies a biocontrol solution developed by the United
States Department of Agriculture (USDA) and the Agricultural
Research Service (ARS) to reduce AF contamination. Specifically, it
uses the ability of native atoxigenic strains of Aspergillus flavus to
naturally outcompete their AF-producing cousins [162]. The
Partnership for Aflatoxin Control in Africa (PACA) is a collaboration
that aims to protect crops, livestock, and people from the effects of
AFs. By combating these toxins, PACA will contribute to improve food
security, health, and trade across the African continent [3].

The Agricultural Cooperative Development International and
Volunteers in Overseas Cooperative Assistance (ACDI/VOCA) project
is funded by the USAID and the Bill and Melinda Gates Foundation
via the International Institute of Tropical Agriculture (IITA) and the
UK government via the African Agricultural Technology Foundation
(AATF) [163]. The AATF has been working with the USDA-ARS since
2007 to test the efficacy of Kenyan atoxigenic strains of Aspergillus
flavus and training farmers to manage AF [163]. The biocontrol
product called Aflasafe™ was applied in soil in the Alhaji Sanusi region
of Zaria, Nigeria, and a similar product was developed and tested in
Kenya and Senegal with encouraging results. Aflasafe™ competes with
the source of AF, the fungus in the soil, before the fungus can
contaminate the crop prior to harvest. Aflasafe™ reduces AF
contamination in maize and groundnuts by 80-90% and improves the
food production, health, livelihood and income of 4.5 million farmers
and consumers while also reducing commodity losses due to AF
contamination [163].

AFB1-DNA adduct control
Several options to diminish or control AFs and the presence of

AFB1-DNA adducts in an organism, which can cause a mutation that
may result in carcinogenesis, are presented below. These possibilities
include natural repair rates, implicated enzymes, natural products and
chemicals.

Natural repair rates of adduct removal
Natural repair rates in the hamster and rat were constant over time

with the removal of AFB1-Gua, accounting for the majority of adduct
disappearance. Rabbits demonstrated biphasic adduct repair; all types
of adducts (AFB1-FAPY) were rapidly removed during the first 12 h
after treatment with AFB1, followed by a slower removal phase of
primarily AFB1-Gua carcinogen activation. Overall, the repair
capabilities of the tracheal epithelium vary among species (rabbit >
hamster > rat) [164].

Induction of resistance to AFB1
The induction of resistance to the binding between AFB1 and

cellular macromolecules in the rat due to chronic exposure to AFB1

and AFM1 was investigated. Pre-exposure to AFM1 resulted in a small
reduction in binding to nucleic acids [165].

Mixtures of genotoxins damage DNA, as evidenced by changes in
DNA adduct formation by pre-existing adducts. AFB1-binding to DNA
may be altered by conformational changes in the helix due to the
presence of a pre-existing acetylamino-fluorene adduct. The use of the
chemical probes hydroxylamine and diethylpyrocarbonate render AF
ineffective and prevent the local denaturation of the oligomer helix.
Changes in the nucleophilicity of neighboring nucleotides and local
steric effects cannot be ruled out [166].

Detoxification enzymes
Detoxification enzymes, enzyme inhibition by ß-naphthoflavone

(BNF), and CYP450 monooxygenases increased the GST activity by
133% in animals fed 50 μg kg-1 AFB1, by 48% in animals pre-exposed
to 50 μg kg-1 AFM1, and remained at control values in rats fed 0.5 μg
kg-1 AFM1.  BNF is an inducer of various detoxification enzymes, such
as CYPs 450 and uridine-5'-diphospho-
glucuronosyltransferases (UGTs) [167]. 

BNF is a chemopreventive agent [168]; it is a flavonoid that occurs
in fruits, vegetables, teas, wine, nuts, and seeds. The biological effects of
flavonoids include the reduction of cardiovascular disease risk, the
inhibition of hepatocytic autophagy, antiviral activity, inhibiting the
breakage and disruption of chromosomes (anticlastogenic effects),
anti-inflammatory analgesic effects and an anti-ischemic effect [169].
Vitamins (C and E), minerals (zinc, selenium), and plant-based
compounds (phenols, flavonoids, isoflavones, and terpenes) act as
antioxidants to avoid the formation of fatty plaques in the arteries
(anti-atherogenic) and exert anticarcinogenic properties.

Enzyme inhibition can also be used to control AFs: 1) The aryl
hydrocarbon (Ah) receptor is a cytosolic protein and activator of
transcription that increases the abundance of selective CYP450s, and
2) the ligand is a substance that binds to a specific receptor and triggers
a response in the cell. It mimics the action of an endogenous ligand
(such as a hormone or neurotransmitter) that binds to the same
receptor [170]. Diets containing BNF inhibited in vivo AFB1-DNA
adduct formation in 46%. Mechanisms of chemoprevention may
depend on the anticarcinogen dose, and even the potent induction of
phase I or phase II activities does not assure that a pathway plays a
predominantly protective role in vivo [171,172].

BNF inhibits aryl hydrocarbon Ah receptor activation and CYP1A1
activity [173,174]. The induction of detoxification enzymes following
chronic exposure to AF might contribute to the reduction of the
covalent binding of AFB1 to macromolecules [165].

BNF modulates AFB1 biotransformation in isolated rabbit lung cells
[175]. The cytotoxic and carcinogenic mycotoxin AFB1 is
biotransformed by CYP450 to a number of relatively nontoxic
metabolites as well as to the ultimately toxic metabolite AFBO. In a
number of tissues and species, BNF hydroxylates AFB1 to the relatively
less toxic metabolite, AFM1.

AF is also toxic and carcinogenic to respiratory tissues. The decrease
in AFB1-DNA binding observed in rabbits treated with BNF is
apparently due to the selective induction of CYP isozymes and related
increases in AFM1 formation and not to the direct inhibition of
epoxidation or enhanced conjugation of AFBO with glutathione [175].

Among the members of the mouse CYP450 2A family, CYP450 2A5
is the best catalyst of AFB1 oxidation to its 8,9-epoxide [176].
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Recombinant yeasts
The role of amino acid residues 209 and 365 of CYP450 2A5 in the

metabolism and toxicity of AFB1 has been studied using recombinant
yeasts. In addition, replacing the hydrophobic amino acid at the 365
position with a positively charged lysine residue strongly decreased the
metabolism of AFB1. The catalytic parameters of AFB1 generally
correlated with its toxicity to the recombinant yeasts expressing the
activating enzyme and with the binding of AFB1 to yeast DNA.
Furthermore, high-affinity substrates and inhibitors of CYP450 2A5
efficiently blocked the toxicity of AFB1 [176]. The induction of
resistance to AFB1 binding to cellular macromolecules in the rat by
chronic exposure to AFB1 and AFM1 was also investigated [165].

Pre-exposure to AFM1

Pre-exposure to AFM1 resulted in a small reduction in binding to
nucleic acids. In rats pre-exposed to 50 μg kg-1 AFB1, GST activity
increased by 133%, and labeled AFB1 binding to DNA, RNA, and
protein decreased by 72%, 74%, and 61%, respectively. Binding
decreased by 48% in rats pre-exposed to 50 μg kg-1 AFM1, and
remained at control values in rats fed 0.5 μg kg-1 AFM1. The induction
of detoxification enzymes following chronic exposure to AF might
contribute to the reduction in the covalent binding between AFB1 and
macromolecules [165].

The AFB1 aldehyde metabolite of AFB1 may contribute to the
cytotoxicity of this hepatocarcinogen via protein adduction. AFB1
aldehyde reductases, specifically the NADPH-dependent aldo-keto
reductases in the rat (AKR7A1) and human (AKR7A2), are known to
metabolize the AFB1 dihydrodiol by forming a AFB1 dialcohol. Using
rat AKR7A1 cDNA, a distinct aldo-keto reductase (AKR7A3) from an
adult human liver cDNA library was isolated and characterized [177].
The reduced amino acid sequence of AKR7A3 shares 80 and 88%
identity with rat AKR7A1 and human AKR7A2, respectively. AKR7A
RNA is expressed at various levels in the human liver, stomach,
pancreas, kidney and liver. Based on the kinetic parameters
determined using recombinant human AKR7A3 and AFB1 dihydrodiol
at pH 7.4, the catalytic efficiency of this reaction equals or exceeds
those reported for CYP450s and GST, which are known to metabolize
AFB1 in vivo. Depending on the extent of AFB1 dihydrodiol
formation, AKR7A may contribute to the protection against AFB1-
induced hepatotoxicity [177].

Inhibition of AFB1 lesions by different compounds
AFB1-induced tumors or preneoplastic lesions in experimental

animals can be inhibited by co-treatment with the compounds
described here.

Fischer 344 rats readily develop liver cancer when exposed to AFB1,
but the dietary administration of the antioxidant ethoxyquin (EQ)
provides protection against hepatocarcinogenesis [178].
Chemoprotection by EQ is accompanied by the overexpression of
enzymes that detoxify activated AFB1. AF-protein adducts form
following the metabolism of AFB1 to the dialdehydic form of AFB1-
dihydrodiol. The dialdehyde can be detoxified by reduction to a
dialcohol via the catalytic actions of an enzyme present in the hepatic
cytosol from rats fed EQ-containing diets [178].

The enzyme responsible for catalyzing the formation of dihydroxy-
AFB1 has been purified from the livers of rats fed diets supplemented
with EQ. This enzyme is a soluble monomeric protein, and this

inducible enzyme has been designated AFB1-aldehyde reductase
(AFB1-AR), a previously unrecognized enzyme that could provide
protection against the cytotoxic effects of AFB1 resulting from the
formation of protein adducts. The importance of AFB1-AR and the
GST Yc2 subunit in conferring resistance to AFB1 has also been
discussed [178].

Chemoprevention and protective chemical compounds
Cancer chemoprevention is the use of agents to inhibit, delay or

reverse carcinogenesis. Many classes of agents, including anti-
estrogens, anti-oxidants, anti-inflammatories, and other diet-derived
agents, have shown promise in this context [179]. Some
phytochemicals (benzyl isothiocyanate, coumarin, or indole-3-
carbinol), synthetic antioxidants, and other drugs (butylated
hydroxyanisole, diethyl maleate, ethoxyquin, BNF, Oltipraz,
phenobarbital, or trans-stilbene oxide) have been shown to increase
hepatic aldo-keto reductase activity toward AFB1-dialdehyde and GST
activity toward AFBO in both male and female rats.

Cruciferous vegetables
Several compounds, such as dietary dithiolethione (DTT),

glucoraphanin, indole-3-carbinol and Oltipraz, are described below.

Dietary dithiolethiones (DTTs)
DTTs are a class of organosulfur compounds present in cruciferous

vegetables. At concentrations of 0.03%, DTTs were demonstrated to
potently protect against AFB1 hepatocarcinogenesis, and they also
reduced the levels of hepatic AFB1 (AFB)-DNA adducts by
80%following acute or subchronic treatments with AFB (250 μg kg-1

daily) by increasing the hepatic activity of the Phase II enzyme GST
without affecting the CYP450 levels or Phase I enzyme activities. The
elimination of the major DNA adduct, AFB-Gua, was markedly
reduced in animals fed DTT [180].

Cruciferous vegetables (e.g., Brussels sprouts, cabbage) contain
several agents, including dithiolethiones, which appear to inhibit
carcinogenesis; however, the specific dietary compounds that produce
the protective effects have not yet been identified [181].

• Brussels sprouts significantly (P< 0.001) decreased hepatic AFB1-
DNA binding by 50-60% and increased hepatic and intestinal GST
activities [182].

• Glucoraphanin, the principal glucosinolate in broccoli sprouts, can
be hydrolyzed by gut microflora to sulforaphane, a potent inducer
of carcinogen detoxification enzymes. In a randomized, placebo-
controlled chemoprevention trial, they demonstrated that drinking
hot water infusions of 3-day-old broccoli sprouts, which contained
defined concentrations of glucosinolates, altered the presence of
AF and phenanthrene. Individuals receiving broccoli sprout
glucosinolates exhibited decreased AF-DNA adduct excretion. The
effects of glucosinolate-rich broccoli sprouts on urinary levels of
AF-DNA adducts and phenanthrene tetraols were reported in a
randomized clinical trial in He Zuo township, Qidong, People's
Republic of China [183,184].

• The inclusion of indole-3-carbinol (I3C), a component of
cruciferous vegetables, in experimental diets inhibited in vivo
AFB1-DNA adduct formation in 68%, and the addition of BNF
(dexamethasone, a corticosteroid) further increased this inhibition
to 51% [171]. AFB1-induced tumors or preneoplastic lesions can be
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inhibited in experimental animals by cotreatment with several
compounds, including I3C and the well-known Ah receptor
agonist BNF. This study examines the influence of these two agents
on the AFB1-glutathione detoxification pathway and AFB1-DNA
adduction in rat livers [171].

• Oltipraz [5- (2-pyrazinyl)- 4-methyl-1, 2-dithiole-3-thione; RP
35972] is a synthetic, substituted 1,2-dithiole-3-thione previously
used in humans as an antischistosomal agent. Animal studies have
demonstrated that Oltipraz is a potent inducer of Phase II
detoxification enzymes, most notably GST. Dietary concentrations
of Oltipraz markedly inhibit AFB1-induced hepatic tumorigenesis
in rats. The levels of hepatic AF-DNA adducts, urinary AF-N7-
guanine, and serum AF-albumin adducts decreased when the
biliary elimination of AF-glutathione conjugants increased, thus
providing predictive biomarkers that can be used to measure a
chemopreventive effect. In other animal experiments, Oltipraz was
found to inhibit chemically induced carcinogenesis in bladder,
colon, breast, stomach, and skin cancer models. In addition,
Oltipraz has been shown to be non-mutagenic and act as a
radioprotector and chemoprotective agent against carbon
tetrachloride and acetaminophen toxicity [181].

Oltipraz protects against AFB1-induced hepatocarcinogenesis in rats
when fed before and during carcinogen exposure; however, this type of
exposure-chemoprotection is not directly relevant to most human
populations. GST catalyzes the detoxification of AFBO and was found
to be rapidly induced in the livers of animals after the beginning of
Oltipraz intervention. The significant protection against presumptive
preneoplastic tumors suggests that Oltipraz may substantially inhibit
the cytotoxic and autopromoting action of repeated exposure to AFB1
and support the utility of intervention trials with Oltipraz in
individuals chronically consuming AFB1-contaminated foods,
particularly in regions with high incidences of liver cancer [185].
Oltipraz was reported as a useful agent for the modulation of gene
expression in subjects at risk for colorectal cancer [186].

Phenols
Butylated hydroxytoluene (BHT) and ellagic acid (EA) are described

below.

• Butylated hydroxytoluene (BHT), also known as
dibutylhydroxytoluene, also known as dibutylhydroxytoluene is a
lipophilic organic derivative of phenol that exhibits antioxidant
properties. Specifically, BHT inhibits tumor formation due to AFB1
by inducing liver GSH-S-transferases. The permitted dose of BHT,
added to processed food as a preservative, does not affect the
biotransformation of AFB1 [187]. The effects of low- and high-dose
dietary BHT on microsome-mediated AFB1-DNA binding were
compared [187].

• The anticarcinogenic effect of BHT pretreatment on the
metabolism and genotoxicity of AFB1 in primary cultures of rat
hepatocytes was due to hepatic detoxification mechanisms.
Specifically, the intracellular concentrations of reactive metabolites
were reduced, and fewer covalently bound adducts were formed
[188].

• Ellagic acid (EA), a plant phenol found in various fruits,
raspberries and nuts, was examined for its ability to inhibit AFB1
mutagenesis and DNA damage in cultured rat and human
tracheobronchial tissues [189]. In the presence of a rat liver S9
microsomal preparation, EA (1.5 μg/plate) inhibited the number of
mutations induced by AFB1 (0.5 μg/plate) by 50%. EA at a dose of

1000 μg/plate inhibited the mutation frequency > 90%. In tissues,
the major AFB1- DNA adducts were AFB1-Gua and AFB1–FAPY,
and their formation was reduced by 28-76% in the presence of EA.
EA acts as a naturally occurring inhibitor of AFB1-related
respiratory damage in rats and humans [189].

Indomethacin
Indomethacin is a nonsteroidal anti-inflammatory drug that

produced a 63-100% decrease in [3H] AFB1-DNA binding in
macrophages from five of seven patients, whereas
nordihydroguaiaretic acid inhibited [3H] AFB1-DNA adduct
formation by 19, 40 and 56% in macrophages from three of seven
patients [190].

Selenium
Selenium effectively inhibited AFB1-induced DNA damage, exerting

a anticarcinogenic effect against AFB1. Selenium pretreatment
inhibited AFB1-DNA binding and adduct formation by increasing the
level of reduced GSH in the liver of treated animals [191].

Natural nutrients
The medicinal herb Thonningia sanguinea, which is prophylactically

used against bronchial asthma in Ghana, exhibits antioxidative and
hepatoprotective actions against acute AFB1 hepatotoxicity in Fischer
344 rats [192].

Coumarin chemoprevention
Coumarin is a natural benzopyrone that is a potent inducer of

AFB1-aldehyde reductase, the GST A5 and P1 subunits, and
NAD(P)H:quinone oxidoreductase in the rat liver [193]. The
consumption of a coumarin-containing diet provides substantial
protection against the initiation of AFB1 hepatocarcinogenesis in the
rat [193].

Cafestol and kahweol (C&K)
These diterpenes are two potentially chemoprotective agents present

in green and roasted coffee beans; they act as blocking agents by
modulating multiple enzymes involved in carcinogen detoxification
[194]. Significant inhibition was detected at 2300 mg kg-1, and the
reduction of DNA adduct formation to nearly 50% of the control value
was maximized by 6200 mg kg-1 of dietary C&K. Two complementary
mechanisms may account for the chemopreventive action of cafestol
and kahweol against AFB1 in rats. A decrease in the expression of the
rat activating CYP450s (CYP2C11 and CYP3A2) was observed, which
was accompanied by a strong induction of the expression of the GST
subunit GST Yc2, which detoxifies AFB1. These coffee components
may broadly inhibit chemical carcinogenesis [194].

Terpenes
A potent protection against AF-induced tumorigenesis through

induction of Nrf2-regulated pathways by the triterpenoid 1-[2-
cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole was reported
[195].
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Monoterpenes
Salvia, amaranth seeds and eucalyptus reduced adduct formation in

rats exposed to AFB1 [196].

Grapefruit
The influence of grapefruit juice intake on AFB1-induced liver DNA

damage was examined in F344 rats administered 5 mg kg-1 AFB1 by
gavage. Grapefruit juice extract inhibited AFB1-induced mutagenesis
by inhibiting the metabolic activation potency of AFB1 in the rat liver
[197].

The hepatic GST activity and glutathione content in the portal blood
and the liver concentrations of AFB1 did not significantly differ
between grapefruit juice intake rats and the controls, but fewer
revertant colonies were observed in the Ames test using Salmonella
typhimurium TA98. A significant decrease in the hepatic CYP3A
content, but not the CYP1A and CYP2C contents, was observed in the
microsomes of grapefruit juice-treated rats compared with non-treated
rats [197].

Vitamins
Whereas lycopene and an excess of vitamin A showed no effect, ß-

carotene, ß-apo-8'carotenal, astaxanthin and canthaxanthin, and a
highly carcinogenic polycyclic aromatic hydrocarbon called 3
methylcholanthreno (3-MC) were highly efficient in reducing the
number and size of liver preneoplastic foci [198].

Both ß carotenoids and 3-MC decreased AFB1-induced DNA
single-strand binding protein and the binding of AFB1 to liver DNA
and plasma albumin in vivo. In vitro, these compounds increased
AFB1 metabolism to AFM1, a less genotoxic metabolite. These
carotenoids exert their protective effect by directing AFB1 metabolism
towards detoxification pathways. By contrast, ß-carotene did not
protect hepatic DNA from AFB1-induced alteration, and caused only
minor changes in AFB1 metabolism. Thus, its protective effect against
the initiation of liver preneoplastic foci by AFB1 appears to be
mediated by other mechanisms [198]. The intake of 300 mg of ascorbic
acid by gavage protected guinea pigs from the acute toxicity of AFB1
[199].

Finally, human hepatocytes (HepG2) cells pretreated with lycopene
and ß-carotene are protected from the toxic effects of AFB1 at both the
cellular and molecular levels [200].

Oldenlandia diffusa and Scutellaria barbata
Oldenlandia diffusa and Scutellaria barbata have been used in

traditional Chinese medicine to treat liver, lung and rectal tumors.
They inhibited mutagenesis, DNA binding and the metabolism of
AFB1 bioactivation [201]. Specifically, they exerted antimutagenic and
antitumorigenic effects on AFB1 by inhibiting the CYP3-mediated
metabolism of AFB1 [201].

Oldenlandia diffusa (=Hedyotis diffusa) is from the Rubiaceae
family, found in the southeastern provinces of China-Guangxi,
Guangdong and Fujian-growing at low altitude in moist fields. It is
dried in sunlight to make tea or used fresh.  The part of the plant used
in herbal formulas is the rhizome. An early use of this herb was to treat
poisonous snake bites, to cure childhood malnutrition, acute
appendicitis, peritonitis and cancer tumors, especially from stomach,
esophagus, rectum, ovary, pleura, liver and lung and, when used

externally, it is effective for vesicles and ichthyosis. It is bitter, neutral,
non-toxic, and used to clear heat, remove toxin, and alleviate
pain [202-210].

Scutellaria barbata is a species of flowering plant in the mint family,
Lamiaceae. It is native to Asia. Its English common name is barbed
skullcap.

Scutellaria refers to banzhilian, the whole plant of Scutellaria
barbata, and should not be confused with "scute," the common name
referring to huangqin, the root of Scutellaria baicalensis. These are in
the mint family. Though both are from the same genus, the former, for
which the tops are used, has essential oils among the active
components, while the latter relies primarily on flavonoids,
particularly baicalin and baicalein [211-214].

The Chinese name for the herb refers to "half twigs" (banzhi): the
stems of the plant are half covered with leaves and half a flower stalk,
hence the name. The term lian is used to describe the lotus, which is
most likely mentioned here just to indicate that the plant is valued, not
for any other relation. Scutellaria had been used as a folk medicine and
is not mentioned in any classic herbals. It was first described formally
in a modern science journal (Jiangsu Botanicals Journal). It was
reported in the National Collection of Medicinal Herbs that: "the herb
is slightly bitter and cool, used to clear heat, remove toxin, and vitalize
blood to remove blood stasis, and it has anticancer actions; it is used
for tumor, appendicitis, hepatitis, ascites due to cirrhosis, and
pulmonary abscess" [211-214].

The plant is a small-leaved mint, producing bright purple flowers.
Like Oldenlandia, it grows in moist flatlands, particularly at the edges
of rice paddies and ditches, in southeastern China, though it is also
found further West, to Sichuan, and further north, to Shaanxi, and at
altitudes up to 2,000 feet. The tops are collected in late spring or early
June, and carefully dried.

Scutellaria is much less studied than Oldenlandia, so there is only
limited information available about it. However, it is considered of
potential value and has been shown in laboratory studies to provide
some of the same mechanisms of anticancer action as Oldenlandia
mentioned above [211-214]. It is a common practice to combine it with
Oldenlandia, especially for treatment of cancer, though it is sometimes
used alone or with other herbs.

Anti-Cancer Formulations
In the book Anticancer Medicinal Herbs, some therapies are

mentioned with Oldenlandia and Scutellaria as main ingredients for
cancers of the specified areas as indicated below. The listing by cancer
site is what the formula had been applied for at the hospital where it
was being used:

• Stomach: Combine Oldenlandia (90 g) and Imperata (60 g) or use
Scutellaria (30) and Imperata (30).

• Esophagus, rectum, and stomach: Oldenlandia (70 g) and Coix
lacryma-jobi (30 g); plus other herbs in small quantities.

• Esophagus: Oldenlandia (60 g), Scutellaria (60 g), Cycas leaf (60 g),
Imperata (60 g), cotton root (60 g).

• Rectum: Oldenlandia (60 g), Scutellaria (15 g), Solanum (60 g),
lonicera stem (60 g), Viola (15 g).

• Ovary: Oldenlandia (30 g), Scutellaria (50 g), Solanum (50 g S.
nigri; 30 g S. lyrati), turtle shell (30 g).

• Pleura (metastasize to): Scutellaria (120 g), Taraxacum (30 g).
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• Liver, rectum, lung: Oldenlandia (60 g) and Scutellaria (60 g).
• Liver: Oldenlandia (60 g), Scutellaria (60 g), Cycis (18 g),

Phragmites (30 g) [211-214].

Chlorophyllin
Chlorophyllin is another natural product that has been reported as

useful to reduce aflatoxin-DNA adducts in individuals at high risk for
liver cancer [215].

Probiotic bacteria
Some selected strains of probiotic bacteria can form tight complexes

with AFB1 and other carcinogens and can block the intestinal
absorption of AFB1 to reduce the urinary excretion of AFB1-Gua, a
marker of the biologically effective dose of AF exposure. Increases in
the urinary excretion of AFB1-Gua adduct are associated with an
increased risk of liver cancer. A probiotic supplement has been shown
to reduce the biologically effective dose of AF exposure and may
thereby offer an effective dietary approach to decrease the risk of liver
cancer [216].

Additives: Aluminosilicates and glucomannans 
The most frequently used method to decontaminate grains for feed

are the addition of aluminosilicates, zeolites and glucomannans.
Aluminosilicates are oxides of silicon and aluminum associated with
cations, such as calcium, magnesium, sodium, potassium, etc. The
dosage for synthetic aluminosilicates is 1 kg/ton, and the dosage for
natural aluminosilicates is 3 to 5 kg/ ton of feed [217]. Glucomannan
comprises 40% of the dry weight of the roots of the Konjac plant, and it
is also a constituent of the bacterial, plant and yeast cell walls, where it
differs in the branches or glycosidic linkages in the linear structure
[218-220].

Legislation
AFs are highly regulated worldwide, with strict limits permitted in

human commodities and animal feed.

The current worldwide regulations for AFs vary depending on
whether the country setting the limits is an importer or exporter. In 76
countries, the AFt tolerance limits are 0-35 μg kg-1, whereas 61
countries legislate AFB1 to be between 1-20 μg kg-1 [221].

The European Union legislated the level of AFB1 and AFt in corn to
be 5 μg kg-1 and 10 μg kg-1, respectively, for further treatment [222].

The Food and Drug Administration (FDA) analyzes products via a
formal compliance program and exploratory surveillance activity [30].
The FDA regulatory levels for AFt (μg kg-1) apply 20 μg kg-1 to all
products for humans, except for milk; the limit for corn for immature
animals and dairy cattle is 20 μg kg-1; the limit for corn or peanuts for
breeding beef cattle, swine and mature poultry is 100 μg kg-1; the limit
for corn or peanuts for finishing swine is 200 μg kg-1; the limit for corn
or peanuts for finishing beef cattle is 300 μg kg-1; the limit for cotton
seed meal as a feed ingredient is 300 μg kg-1; the limit of all other feed
stuffs is 20 μg kg-1, and that for milk (AFM1) is 0.5 μg kg-1 [222].

Conclusion
Although aflatoxins are “unavoidable” toxins in food, and the most

important mutagens and carcinogens due to their frequent ingestion

and the big amount of contaminated foods, many methods are
available to control them, ranging from natural detoxifying methods to
more sophisticated ones. The metabolic routes of aflatoxins were
mentioned here, including the CYP 450 isoenzymes and the formation
of biomarkers. Physicians must be well informed to help people with
uncommon and easy ways to control aflatoxins, which have produced
serious outbreaks worldwide. The easy ways can be to reduce the
ingestion of risky foods such as oilseeds, dairy products, spices, chili
pepper and dry fruits, to prefer wheat instead of maize products. In the
field the biocontrol method using non mutagenic Aspergillus spp
strains have given good results. The role of government is crucial in
monitoring the food products that are available for the human
population, as well as the importations of foods with undetectable
amounts of aflatoxins.
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