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Abstract

The role of mechanical force as an important regulator of structure and function of mammalian cells, tissues, and
organs has recently been recognized. However, mechanical overload is a pathogenesis or comorbidity existing in a
variety of heart diseases, such as hypertension, aortic regurgitation and myocardial infarction. Physical stimuli
sensed by cells are transmitted through intracellular signal transduction pathways resulting in altered physiological
responses or pathological conditions. Emerging evidence from experimental studies indicate that β1-integrin and the
angiotensin II type I (AT1) receptor play critical roles as mechanosensors in the regulation of heart contraction,
growth and leading to heart failure. Integrin link the extracellular matrix and the intracellular cytoskeleton to initiate
the mechanical signalling, whereas, the AT1 receptor could be activated by mechanical stress through an
angiotensin-II-independent mechanism. Recent studies show that both Integrin and AT1 receptor and their
downstream signalling factors including MAPKs, AKT, FAK, ILK and GTPase regulate heart function in cardiac
myocytes. In this review we describe the role of mechanical sensors residing within the plasma membrane,
mechanical sensor induced downstream signalling factors and its potential roles in cardiac contraction and growth.

Keywords: Mechanosensing; β1-integrin; AT1 receptor; Cardiac
function; Signalling

Introduction
Heart failure is the leading cause of morbidity and mortality in

developed countries. Cardiac dysfunction in patients with
hypertension-induced heart failure is characterized by reduced left
systolic and diastolic ventricular function, which is associated with
myocyte hypertrophy and ventricular re-modeling. Although the
pathophysiological mechanisms associated with pressure overload-
induced cardiac hypertrophy have the focus of intense scientific
investigation for over 3 decades, the cellular mechanisms remain
poorly understood [1,2]. There is abundant evidence that regulation of
protein phosphorylation through intracellular kinases and
phosphatases is a key mechanism by which cells respond to
extracellular stimuli [2-8]. In this area of research, using in vivo and in
vitro models, both β1-integrin and the angiotensin II type I (AT1)
receptor have been shown to serve as mechanosensors, which can
temporally regulate contractile function in cardiac myocytes [3,8-15].
Since mechanical sensors and their downstream signalling factors have
an important roles in the regulation of contractile function and
diastolic function may provide a new therapeutic approach for the
treatment of diastolic heart disease.

Mechanical Sensors
A growing body of evidence indicates that extracellular binding

proteins and G-protein coupled receptors and associated signalling

pathways play critical roles in sensing and transducing mechanical
stress into biochemical signals that coordinate cardiac contraction and
play major roles in the pathological progression of cardiac disease. In
this mini review we discuss two major mechanical sensors, Integrins
and AT1 receptors.

Integrins
Mechanical load induced hypertrophic growth of the adult heart is

caused by signals beginning at the cell surface through receptors and
integrins play a very important mechanical sensors in cardiac
myocytes [16]. Integrins are a family of cell-surface receptors that link
the extracellular matrix (ECM) to the cellular cytoskeleton at places
called focal adhesion sites [17-19]. Integrins are heterodimeric
molecules comprised of non-covalently associated α and β subunits. A
given α-subunit may interact with more than one β-subunit, resulting
in 24 different heterodimers identified to date. Cardiac myocytes
express a limited set of integrin subunits, which include α1, α3, α4, α6,
α7, α10 and α11, β1, β3 and β5 [20-24]. The specificity of integrin
signalling is made possible by α and β-subunits that form the
heterodimeric pair. The α-subunit generally confers ECM specificity
[17,25], whereas the β-subunit interacts with the cytoplasmic
environment. Ligand binding to the extracellular integrin domain
induces conformational changes and integrin clustering for activation
of signalling cascades and recruitment of multiprotein complexes to
focal adhesions [26,27]. Because integrins lack enzymatic activity,
activation of signalling factors requires interaction with cellular
proteins that have kinase activity. In non-cardiac cells, the cytoplasmic
tail of the β-subunit has been shown to directly bind to several
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cytoskeletal proteins that associate with signalling molecules [28]. In
cultured neonatal rat cardiac myocytes, β1 integrin has been shown to
be important for coupling mechanical stretch to activation of MAPKs,
as well as focal adhesion kinase (FAK) and Rho GTPases [29-31].
Angiotensin II (Ang II) and other growth factors stimulate cardiac
myocyte contraction and adhesion via β1 and αvβ3 integrins, which
involve inside-to-outside signalling mechanisms [20,22-24]. Ang II
also orchestrates adhesion through upregulation of various integrins
(αv, β1, β3, β5), as well as expression of cytoskeletal protein, such as α-
actinin, which is intimately connected to integrins at the site of focal
adhesions [24]. However, the role of integrins in the regulation of
cardiac myocyte contraction remains to be systematically studied
under both physiologic and pathologic conditions. In non-cardiac
tissues, physiological stretch has been shown to regulate contractility
primarily through integrins that couple to FAK activation [32]. It is
therefore possible that FAK coupled integrins, such as β1 integrin
could also regulate contractile force in cardiac myocytes. This would
imply that integrins could serve as novel targets for the therapy in
patients with contractile dysfunction.

Angiotensin II Type 1 Receptors (AT1R)
Mechanical stress is the most important stimulus for the

development of cardiac hypertrophy. Actually, mechanical stress
induces a variety of hypertrophic responses in cardiac myocytes [33].
Furthermore, pretreatment of cardiac myocytes with AT1 receptor
blockers (ARBs) significantly attenuates all of these mechanical
stretch-induced hypertrophic responses [34,35]. AT1 receptor is a
well-known seven transmembrane-spanning G protein coupled
receptor (GPCR) that has significant contribution for the development
of cardiac hypertrophy [36]. Early studies revealed the involvement of
autocrine/paracrine mechanisms through stretch-induced release of
AngII. Recent studies show that the AT1 receptor can be activated by
mechanical stress through an Ang II-independent mechanism [36,37].
It is well recognized that AT1 receptor is the first mechanosensitive
GPCR component that mediates transformation of mechanical stimuli
into biochemical information and gives rise to mechanosensor
induced different cellular responses (such as inflammation, cell
growth, and differentiation etc.) [36,38]. Inverse agonists, such as
candesartan, which stabilizes the AT1 receptor in an inactive
conformation, suppresses AT1 activation by both mechanical stress
and Ang II [39]. Mechanical stretch induced activation of the AT1
receptor produces an anticlockwise rotation and a shift of
transmembrane (TM) 7 into the ligand binding pocket [39]. Recent
studies suggest that mechanical stretch induces β-arrestin−biased
signalling downstream of AT1 receptors in the absence of ligand or G
protein activation [40]. Mechanical stretch triggered an AT1 receptors
mediated conformational change in β-arrestin similar to that induced
by a β-arrestin-biased ligand to selectively stimulate receptor signalling
in the absence of detectable G protein activation [40]. Yatabe et al.,
demonstrated that mechanical stress caused an increase in the
phosphorylation levels of ERK in rat mesangial cells (RMCs) through
the Ang II independent AT1 receptor activation [37]. An angiotensin
receptor blocker (ARB), olmesartan, was found to attenuate ERK
activation induced by mechanical stress. Several studies have reported
that under mechanical stretch the concentrations of secreted Ang II
and the levels of angiotensinogen expression were unchanged [41,42].
Although AT1 has been shown to couple to signalling pathways that
regulate intracellular calcium, a potential role of AT1 in mediating
stretch-induced changes in cardiac myocyte contractility remain to be
explored. A deeper understanding of the cellular and molecular

mechanisms responsible for activation and regulation of AT1
mediated signalling may help identify new pharmacologic agents that
can be used to regulate cardiac contractile function and hypertrophy.

Signalling Factors
Mechanical sensors can be activated by mechanical stretch leading

to activation of multiple classic signalling pathways involving in
alterations of a large number of signalling molecules, e.g. focal
adhesion kinase, Rho family GTPases, Integrin-linked kinases, MAP
kinases and AKT. These activated multiple signalling pathways
respectively use their own classic signalling pathways to regulate heart
functions.

Figure 1: Schematic of regulation of cardiac myocytes function by
mechanical stretch.

Mechanical stretch can lead to activation angiotensin II type 1
receptor and integrins. Activation of these proteins can initiate several
downstream signalling pathways, such as MAPK and AKT, which can
alter contractile function by leading to changes in intracellular calcium
ion concentration. Abbreviations: AT1R, Angiotensin II Type 1
Receptor; ERK, extracellular signal regulated kinase; JNK, c-jun N-
terminal kinase; p38, p38 mitogen activated protein kinase; FAK, focal
adhesion kinase; PP2A, protein phosphatase-2 A; RYR, ryanodine
receptors; SR, sarcoplasmic reticulum; SERCA, sarcoplasmic reticulum
calcium-ATPase (Figure 1).

Focal Adhesion Kinase (FAK)
Focal adhesion kinase (FAK) is a tyrosine-phosphorylated protein

that localizes to integrin-enriched cell adhesion sites [43,44]. FAK
directly binds to the cytoplasmic tail of β-integrin and thereby plays a
major role in integrin-mediated signalling [45]. Although FAK is an
essential kinase, as indicated by the fact that null mice are
embryonically lethal; the function of FAK in the heart has been
controversial. Several groups advocate the cardioprotective nature of
FAK while others disagree [46-49]. A number of exciting new animal

Citation: Dostal DE, Feng H, Nizamutdinov D, Golden HB, Afroze SH, et al. (2014) Mechanosensing and Regulation of Cardiac Function. J Clin
Exp Cardiolog 5: 314. doi:10.4172/2155-9880.1000314

Page 2 of 6

J Clin Exp Cardiolog
ISSN:2155-9880 JCEC, an open access journal

Volume 5 • Issue 5 • 1000314



models have now clearly established a role for FAK in the development
of the cardiovascular system and possibly in heart disease. At the
cellular level, FAK controls cell migration, proliferation and survival
[46,50]. FAK is involved in proliferation processes and extracellular
mechanical signalling in the heart, and is highly expressed in the
myocardium. Recent studies indicate that FAK is important for
transducing mechanical stimuli in isolated cardiac myocytes,
fibroblasts and in mechanically overloaded myocardium [29,46].
Transgenic mice with cardiac myocyte overexpression of cardiac
myocyte FAK demonstrate concentric cardiac hypertrophy, suggesting
that FAK selectively regulates signalling mechanisms that govern
myocyte growth in width, which could be important for the adaptive
response to increases in cardiac afterload [51]. In cardiac myocytes,
mechanical stretch induces FAK phosphorylation at Tyr397, Tyr861
and Tyr925, which yet remains to be shown to play a role in cardiac
myocytes contractile function [29]. The temporal dynamics, molecular
interactions and abilities of FAK to sense contractile force and
transduce mechanical stretch are basic questions which remain to be
resolved for cardiac cells under physiologic and pathologic conditions.

Rho family GTPases
The Ras homologous (Rho) family of small GTPases control a large

number of cardiac functions in the heart. Dysregulation of these small
G proteins has been demonstrated to have pathological consequences
in the cardiovascular system. Mechanical stretch activates the Rho
GTPases, Rac1 and RhoA, which participate in focal adhesion
formation and activation of growth pathways. Integrins are involved in
the regulation of the activities of several members of the Rho family of
small GTPases, which control the growth or contraction of
filamentous actin fibers and myosin [52]. Several tyrosine kinase
members, such as the Src family, are also involved in the transduction
of signals from integrin to Rho GTPases. Previously it has been
reported that Src, either alone or in association with other classes of
tyrosine kinases, has the ability to regulate the Rho GTPase activation
cycle by modulating guanine-exchange factor and GTPase activating
proteins [53]. In addition, experiments utilizing cardiac fibroblasts
isolated from neonatal rat hearts treated with dominant-negative Rac1
or RhoA adenoviruses and subjected to mechanical stretch, revealed
an activating role for Rac1 and an inhibitory role for RhoA in FAK
activation that resulted in AKT473 phosphorylation [31]. In contrast
to Rac1, previous studies suggest that RhoA is a mediator of
hypertrophic responses in the myocardium [54,55]. Inhibition of the
RhoA affecter ROCK, using the ROCK inhibitor GSK 576371,
prevented left ventricular hypertrophy and reduced collagen
deposition, which were accompanied by improved diastolic function
in pressure overload-induced cardiac hypertrophy in the rat [56]. The
effect of Rho GTPase on regulation of mechanical stretch in cardiac
myocytes contractility has not been clarified. Emerging evidence
indicates that Rho GTPases, contribute to cardiac excitation-
contraction coupling mechanisms by controlling intracellular Ca2+

signalling and phosphorylation/dephosphorylation. RhoA has been
associated with regulation of the L-type Ca2+channel and regulation of
SERCA2 expression in cardiac myocytes [57,58]. There is also
evidence that Rac1, together with Pak1 may regulate contractility by
reduce cytosolic Ca2+ mobilization by altering L-type Ca2+ channels
and/or ryanodine gates via dephosphorylation by protein phosphatase
2A [59,60]. Although these proteins have been identified as potential
targets for the development of new therapeutic strategies in the
treatment of heart failure, future efforts remain to be performed which

will better understand the mechanisms and identify the molecular
partners that regulate the activities of Rho GTPases in the heart.

Integrin-linked kinase (ILK)
ILK is a widely expressed serine/threonine kinase that binds to the

C terminus of β1-integrin [61]. ILK links extracellular matrix
interactions to cellular processes such as remodeling of cytoskeletal
proteins, growth, proliferation, survival, and differentiation [12]. To
date, a large number of proteins associated with mechanosensing have
been shown to bind to different domains of ILK. It binds to α-actinin
via β-parvin/affixin and forms a complex with PINCH and thymosin
β4 [12]. It has been shown to phosphorylate myosin light chain,
GSK-3β (glycogen synthase kinase-3β), and AKT/PKB [62]. Several
genetic loss-of-function studies in flies, worms, and mice have revealed
embryonic death due to cell adhesion and cytoskeletal defects [12].
The conditional cardiac knock-out in mice leads to DCM and sudden
cardiac death [63]. Bendig et al. applied a forward genetic screen in
zebrafish and identified an L308P mutation in the zILK gene causing
progressive loss of contractility in zebrafish hearts [14]. This mutation
disrupted the interaction with β-parvin/affixin, suggesting that its
presence is essential for normal cardiac function and potentially
cardiac stress sensing [14]. Likewise, in another zebrafish study, a
nonsense mutation (Y319X) led to a dysmorphic ventricle with
reduced cardiac function combined with severe endothelial defects,
similar to alterations observed in mice lacking the integrin-binding
extracellular matrix protein laminin α4 [64]. Cardiac-restricted
overexpression of ILK induces cardiac hypertrophy via activation of
ERK and p38 MAPK, hence suggesting ILK to be a proximal
prohypertrophic signalling activator [13]. Little is known regarding the
role of ILK in cardiac myocyte contraction. The localization of ILK
localization to costameres and z-discs suggests that ILK plays a crucial
role in the ability of the heart to adapt to changing workloads. The
exact roles of ILK as both a mechanosensor and regulator of myocyte
contraction under normal and pathological conditions therefore
remain to be elucidated.

The mitogen-activated protein kinase (MAPK) pathway
Mitogen-activated protein kinases (MAPKs) are serine/threonine

kinases that become activated upon tyrosine/threonine
phosphorylation and additional modifications, and then in turn
phosphorylate and activate nuclear substrates (such as c-myc, c-jun,
ATF-2, and p62) and other kinases (such as p90 and MAPKAP kinase)
[29,30,65-68]. The three best characterized MAPK cascades are the
extracellular-regulated kinases (ERK), the c-Jun N- terminal kinases
(JNK) and the p38 MAPKs cascade, the latter two belong to the group
of stress-activated protein kinases (SAPKs). Studies from our lab and
others indicate that ERK, JNK and p38 are activated by mechanical
stretch in isolated neonatal rat ventricular myocytes [29,30]. Although
MAP kinases have been shown to participate in the regulation of
cardiac contractility, the underlying mechanisms are poorly
understood and appear to be different for each of MAPK cascades.
Acute p38 activation has been shown to reduce force development and
activate protein phosphatase-2A (PP2A) in ventricular myocytes [69].
PP2A activation not only affects calcium handing by
dephosphorylating PLB, but is localized to the Z-disc, where it can “re-
tune” contractile filaments by dephosphorylating regulatory proteins
troponin-I and tropomyosin. Recent studies indicate that the B56α
targeting protein of the PP2A complex localizes to the Z-disc, but
moves away with α-adrenergic stimulation [70]. Previous studies
showing that JNK activation downregulates B56α expression and

Citation: Dostal DE, Feng H, Nizamutdinov D, Golden HB, Afroze SH, et al. (2014) Mechanosensing and Regulation of Cardiac Function. J Clin
Exp Cardiolog 5: 314. doi:10.4172/2155-9880.1000314

Page 3 of 6

J Clin Exp Cardiolog
ISSN:2155-9880 JCEC, an open access journal

Volume 5 • Issue 5 • 1000314



mRNA stability in cardiac myocytes, provides evidence that JNK can
regulate contractility at the myofilament level [71]. Although JNK is
well-known to have major roles in transcriptional regulation and
apoptosis, its role as a regulator of intracellular Ca2+in cardiac
myocytes is a novel function which remains to be completely
understood.

Protein kinase B (AKT)
AKT, also referred to as protein kinase B, is a serine/threonine

kinase found as part of the insulin, insulin-like growth factor-1
(IGF-1)4/phosphatidylinositol 3-kinase (PI3K)/phosphatidylinositol-
dependent kinase-1 (PDK1) pathway [72]. Upon activation, AKT
phosphorylates a broad range of substrates involved in metabolism,
transcription, translation, cell growth, differentiation, proliferation,
and survival [73,74]. In the heart the IGF-1/ AKT axis is implicated in
the control of physiological cardiac hypertrophy, contractile function,
and Ca2+ handling [75-82].

Associations between AKT activity and calcium handling proteins
were initially observed in experimental models of cardiomyopathy
wherein decreased AKT activation was concurrent with diminished
SERCA, NCX, and PLB phosphorylation [83]. Conversely, in
transgenic mice with cardiac specific overexpression of AKT, it was
shown that the amplitude of Ca2+ current was enhanced in AKT
myocytes compared with that in wild-type myocytes, which may be at
least in part responsible for the enhanced cellular Ca2+ transients
[76,84]. Second, an increased protein expression of SERCA could be
identified as another molecular mechanism in transgenic mice
expressing cardiac specific constitutively active AKT. Adenoviral gene
transfer of the transgene into rat myocardium [85,86] recapitulates
this phenotype. Recently, another study showed that activated AKT
phosphorylates PLB at Thr17, providing a new mechanism whereby
the preferential translocation of AKT to the SR is responsible for
enhancement of contractility without stimulation of hypertrophy [85].
We have also reported that AKT functionally improves diastolic
calcium handling through phosphorylation of PLB at Thr17 by
anthrax lethal toxin [87].

Similarly, mice created with cardiac-specific expression of nuclear-
targeted AKT also showed enhanced contractility and
superphysiological ventricular dynamics, but the molecular
mechanisms responsible for the increased cardiac performance were
related to increased loading of the SR due to increased
phosphorylation of phospholamban (Ser16 PLB) [88]. In addition, it
was shown that phosphatase PP1, which dephosphorylates PLB and
thereby inhibits SERCA, provides an additional pathway for increased
contractility.

Conclusion
In summary, mechanosensing is required for maintaining normal

function in the myocardium. External activation of mechanosensors
regulates cardiac development and contractile performance, whereas
disruption of this signalling mechanism results in mechanical
dysregulation, cardiac hypertrophy and heart failure. Although in vivo
and in vitro studies have been widely used to describe the effects of
mechanical forces on myocyte structure and function, the signalling
pathways that convert the mechanical stimuli into biological and
pathological responses remain to be fully understood. Although a
number of key mechanosensors and downstream signalling factors
have been identified, further research is needed to unravel the

regulatory determinants under physiological and pathological
conditions. These are of great clinical importance because these
mechanisms are an important component of the adaptive response to
cardiac disease and heart failure. A better understanding of these
stress-dependent signalling pathways will be important for developing
novel therapeutic strategies to control the progression cardiac
hypertrophy and prevent heart failure.
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