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Introduction
Kinases have been extensively studied since the discovery of enzyme 

regulation via phosphorylation in the 1950’s. They represent more than 
500 proteins and 100,000 phosphorylation sites [1]. They have been 
examined, among other things, as regulators, signal transducers, and 
are the second most drugged gene class [2]. While genetic sequencing 
has identified most kinases in the human genome, it does not describe 
the ‘kinome’, at the level of the activity of kinases on kinase targets. 
Kinases play a very important role in cancer development and 
kinomics, a global description of kinases and their substrates, shows 
great promise in the field of personalized medicine, correspondingly, 
numerous technologies have been developed to measure the kinome 
activity. 

Of the techniques for kinome examination, peptide chips show 
significant promise due to several key features: 1) They can be used for 
high-throughput screening, 2) they allow the investigator to directly 
measure the effects of a drug, 3) they are comparably easy to create, and 
4) they maintain similar enzyme kinetics to in vivo [3]. In particular, we 
are examining the PamGene PamChip array, which allows a researcher 
to record and compare the phosphorylation of 144 13 amino acid long
peptides containing one or more phosphorylatable residues [4].

Total protein lysates are prepared with protease and phosphatase 
inhibitors and 1-10 μg of lysate are mixed in kinase buffer with ATP 
and Mg2+. Samples are then loaded onto the PamStation along with 
fluorescently labeled anti-phosphoserine, anti-phosphothreonine, or 
anti-phosphotyrosine antibodies. Using microfluidics, the sample is 
repeatedly pumped through an aluminum oxide matrix containing an 

array of phosphorylatable peptide probes. Active kinases within the lysate 
sample can phosphorylate these peptide probes that are then quantified 
by measuring the fluorescence of the phospho-specific antibodies using 
a charge-coupled device (CCD) camera. Each PamChip® experiment 
produces two sets of data for 144 phosphorylatable amino acid 
residues. The first, a non-linear model, uses a camera exposure time of 
50 ms to compare the phosphorylation of the residues at time points 
throughout the experiment (Figure 1). The second, a linear model, uses 
varying camera exposure time from 5-150 ms to quantify the end level 
phosphorylation following the washing away of the reactants. For the 
purposes of this publication we will discuss the first, non-linear, time 
series model.

Due to the nature of kinases, any of the 144 peptides will likely 
have numerous kinases acting upon them [5,6]; additionally the 
secondary step of antibody binding to produce a fluorescent signal 
further complicates the picture. This leads to a serious problem with 
deconvoluting the signal to the representative original kinases. In the 
literature upstream kinases are predicted using probable upstream 
kinase prediction linked back to biological pathways. This has shown 
utility in a wide range of disease models such as schizophrenia [7,8], 
HIV latency [9], renal cell carcinoma [10], Glioblastoma [11,12] and 
lung cancer [13]. Additionally a number of studies have utilized ex vivo 
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treatments with kinase inhibitors not only against cells prior to lysis, 
but also treating lysates directly before profiling. In rectal cancer ex 
vivo treatment with the kinase inhibitor sunitinib was used to properly 
group and identify patients that would respond to both chemotherapy 
and radiotherapy [14] as well as to predict tumor cell dissemination 
within patients [15]. However, kinetic data, using a derivative of the 
curve fit at an early point (initial velocity or slope), was used in a similar 
drug study by Versele et al. [16] to comparatively measure, and predict 
response in 27 cancer cells to a multitargeted kinase inhibitor, a finding 
that was validated in xenograft tumor bearing mice. It is of the utmost 
importance that the signals created properly represent the data and 
introduce minimal error. Therefore we sought to investigate the error 
introduced by the time series curve fitting procedure. 

The current model of the kinomic time series [17] relies on an 
exponential model, which is typically associated with processes as 
diverse as biological growth, radioactive decay, and first order enzyme 
kinetics, however given the complicated picture we present above we 
theorize that first order kinetics will not be the optimal method to 
represent the data.

)( -c x
0 maxy = y + y 1 - e ⋅

⋅   				                 (1)

As the results described below will confirm, we hypothesize, the 
biochemical processes underlying the production of the phosphorylated 
fluorescent signals are better described by hyperbolic, not exponential, 
activity curves. 

It should be noted that previous studies by other authors have 
approached the analysis of the kinomic signal describing it with 
penalized smoothing splines [18]. However, like other smoothing 
approaches to signal description [19,20]; those approaches seek to 
subtract the statistical structure of signal noise rather than capturing 
the underlying mechanism. Since our goal is to translate the dynamics 
of the kinomic signal into a vector of parameters that can be mapped 
to biochemical mechanisms that line of work was not pursued here. In 
the same vein, this study does not approach the systems dynamics that 
multiple kinomic signals may in fact be describing collectively. That 
systems-level modeling of the kinase signal is approached in studies 
like “Mathematical Models of Protein Kinase Signal Transduction” 

Figure 1: Representation of the data flow for the phosphorylation reaction for PamGene PamChip® experiments. Cycle 
number represents reaction time. Fluorescence intensity of peptide phosphorylation is recorded using a camera with a 
50 ms exposure. All images were adjusted using color correction curve in Gimp (smooth curve x:225>10, y:225>165). 
(A) Two images taken during the phosphorylation reaction. (B) Two selected spots from (A) displayed for every time 
point. (C) Graphical representation of the median signal - background value calculated by the PamGene BioNavigator 
and plotted utilizing Google Charts.

Figure 1: Representation of the data flow for the phosphorylation reaction for PamGene PamChip® experiments. Cycle number represents reaction time. 
Fluorescence intensity of peptide phosphorylation is recorded using a camera with a 50 ms exposure. All images were adjusted using color correction curve in 
Gimp (smooth curve x:225>10, y:225>165). (A) Two images taken during the phosphorylation reaction. (B) Two selected spots from (A) displayed for every time 
point. (C) Graphical representation of the median signal - background value calculated by PamGene BioNavigator and plotted utilizing Google Charts.
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[21]. More broadly, the description of multi-signal systems requires the 
adoption of more generic frameworks, if for no other reason than for the 
sake of maintaining parametric sensitivity. An excellent review of the 
generalization of individual reaction kinetics into broader Biochemical 
Systems Theory frameworks such as S-Systems can be found in Voit 
EO [22]. The relevant context for the study reported here is that 
parameterization of kinomic signals produces more a meaningful and 
accurate description of both individual signal and system-level kinase 
activity.

Methods
PamGene

PamGene utilizes a peptide array consisting of 144 unique peptides 
in approximately equal concentrations. Each peptide contains one or 
more phosphorylatable residues, and all peptides are simultaneously 
exposed to cell lysate containing active kinases. A detailed description 
of the sample preparation, processing, and analysis can be found here 
[11]. Once a residue is phosphorylated fluorescent antibodies bind 
the phosphorylated peptide residue. The signal recorded is then the 
amount of phosphorylation based on this fluorescence, for a series of 
time points [23]. The signal is normalized using PamGene®’s PAMCHIP 
EVOLVE software as part of the BioNavigator software suite in two 
major steps: (1) Image analysis segments the image to identify the spots 
and the local region around them, and then (2) local background pixels 
are identified as the corners of a square cell around the spots. Median 
signal over the spot is subtracted from the median background signal to 
produce a normalized value [24].

Curve fitting

The numerical methods developed for this study sought to satisfy 
recommendations for reproducibility to the fullest. Accordingly, 
criteria were set to utilize an open source, version controlled, and web 
executable application. Those requirements were met by developing a 
JavaScript library implementing a simplified, portable, steepest-descent 
non-linear regression algorithm. Source code can be found (https://
github.com/adussaq/amd_cf). 

To avoid blocking the accompanying web application, this library 
was written to be run within web workers, using background processes 
supported by modern Web Browsers [25]. A specialized library that 
coordinates the web workers in the execution of this algorithm by 
queuing the asyncronous tasks was developed and is also made publicly 
available with open source at https://github.com/adussaq/amd_ww/. 
Both of these modules are designed to work with all modern web 
browsers including Mozilla’s Firefox, Google Chrome, and Apple’s 
Safari, both on the mobile and desktop platforms.

The iterative process to minimize the sum of square deviations is 
summarized below: 

1 n 1 1,1 1,p 1 n oX = [X , ...X ], X = [x , ..., x ], Y = [y , ..., y ], Y = f(X, P )

0 0,1 0,m 1 1,1 1,m 1 mP = [p , ..., p ], P = [p , ..., p ], S = [s , ..., s ]

( )
1

n

q=
∑ 2

q qsse(Y, f(X, P)) = f(X , P - Y )

(1) 1,1 1 0,0p = s + p

(2) 1 0if sse(Y, f(X, P )) < sse(Y, f(X, P ))

0,1 1,1 1 1p = p , s = s * 1.2

else

1,1 1,0 1 1p = p , s = s * -0.5

(3) Repeat 1 – 2 for p0,2 through p0,m 

(4) Repeat 1 – 3 until end condition are satisfied

Where P is the constant parameter vector, X is an independent 
matrix; Y is the corresponding dependent variable for the equation 

î iy = f(X , P) . S are the steps taken in each iteration of the algorithm 
and sse is the sum of square deviations. Several parameters may be 
set, including a max iteration count (default 1000), initial step (default 
1/100 of P0), and minimum percent change of sum of square deviations 
(default 6e-5%). In addition to the parameter vector, this returns an 
R2 and a Wald-Wolfowitz (WW) Runs Test to measure goodness of 
fit. Initial parameters for each equation were determined by iteratively 
resolving the equation for individual points algebraically, as illustrated 
for equation 3 by the implementation of the method setInitial at http://
bit.ly/1Yosos6. All initial parameterization procedures, are kept 
alongside the version controlled in the public github repository https://
github.com/kinome. 

These modules were combined with the following visualization 
libraries: Google chart tools [26], jqmath [27], bootstrap [28] and 
jQuery [29] to create a tool to visualize individual curve fits. This is 
available at http://bit.ly/kinomic and shown in Figure 2. This represents 
a small example of these tools as they were applied to the remainder of 
the data.

Model identification

Thirty-six samples ran utilizing protein tyrosine kinase (PTK) chips 
were selected to represent the global analytical space. These samples 
were selected to cover the spectrum of good to bad signal observations. 
These kinomic experiments included lysates derived from short-term 
frozen primary human tumor tissue, long term frozen primary human 
tumor tissue, and freshly lysed cultured human tumor and non-tumor 
cells. Lysates treated both in vitro, and ex vivo (on chip) with kinase 
inhibitors were included. More information on samples selected can be 
found in Table S1.

Quality control

Since poor data fitting can be due to a number of problems, we 
selected only the data sets that had a Wald-Wolfowitz (WW) runs test 
with a p-value ≥ 0.05 for all three models. This choice was based on 
experimentation comparing this selection method to R2 (Figure S1). 
This reference data was converted into density scores using the Matlab 
package kde [30] (available at: http://bit.ly/kde_botev).

Technical replicates

Two sets of 6 technical replicates for PTK data that passed QC as 
described above individually for models 2 and 3 (results) were selected 
for analysis. The values were exported, and the reproducibility of key 
parameters along with the calculated vini for model 2 (results) were 
investigated using transformed non-parametric quantile data for each 
set of replicates. This data was then converted to density measurements 
using Kernal Density Estimation [31] with Parzen–Rosenblatt rule of 
thumb window. 

Results
The data analysis that produced the results described in this section 

can be reproduced for arbitrary datasets by using the web application at 
http://bit.ly/kinomic, depicted in Figure 2. As detailed in the methods, 

https://github.com/adussaq/amd_cf
https://github.com/adussaq/amd_cf
https://github.com/adussaq/amd_ww/
http://bit.ly/1Yosos6
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no data is transferred out of the user’s web browser - all computation 
happens in the browser, and the code can be inspected by opening the 
developer tools or by utilizing the github repository (for example, see 
https://developer.chrome.com/devtools for Google Chrome, or https://
developer.mozilla.org/en-US/docs/Tools for Mozilla Firefox). 

Model identification

The PamGene kinase peptide arrays generate two unique sets of 
fluorescence intensity data for each sample run: a post-wash linear 
series and a nonlinear time progression. The post-wash linear data 
is obtained by varying the camera exposure time following washing 
off of remaining sample and reagents. The time series data however, 
is obtained as the reaction progresses at set intervals based on the 
number of cycles the machine has run. Three models were investigated: 
a simple negative exponential (equation 1), a background corrected (c0) 
variation of the negative exponential (equation 2) and a background 
corrected (c0) rational hyperbolic (equation 3).

⋅⋅ -k c
0 maxy = y + y (1 - e )  				                 (1)

0-k (c-c )
0 maxy = y + y × (1 - e )⋅  			                 (2)

max i 0

max i 0

y v (c - c )
y =

y + v (c - c )
⋅ ⋅

⋅
 				                  (3)

In each of these models, y represents the amount of phosphorylation 
measured as median signal minus the background, at cycle number, 
c. The value ymax is the upper asymptotic value y can reach, whereas 
vi is initial slope of y and k represents the rate of exponential growth. 
Equation 3 was derived as follows:

iy = v c⋅

[Linear accumulation of a phosphorylated product c: ]idy / dc = v

i maxy = v c(1 - y / y )⋅

[Limited]

( )( )

 
 

↔

⋅ ⋅

= ↔ 
 

↔

⋅

↔

↔

i i
i i

max max

-1-1 -1
i max

max i 0

max i 0

v cy v c
y = v c - y 1 + v c

y y

y = v c + y

y v (c - c )
y =

y + v (c - c )

Due to the rate of asymptotic approarch being higher in an 
exponential equations than in a rational ones all data will produce 
different ymax predictions based on whether model 1/2 or model 3 is 
utilized. Since this is a predictive term and by definition never truly 
reached it cannot be expected to be accurate and should not be used 
for comparisons. 

Model identification

The thirty-six samples analyzed to represent the global analytical 
space generated 5184 time series (36 series x 144 kinases). Each of them 
was parameterized for each of the 3 equations. Of those, 2863 (55%) 
had a Run’s test p-value ≥ 0.05 across all three models, (eq1 2924, eq2 
3142, eq3 3342) passing quality control (see Methods). Figure 3a shows 
the distribution of residuals across this sample data (37,219 points x 
3 models). Peak densities were as follows, eq1-0.142, eq2-0.150, eq3-
0.165. This suggests that model 3 offers a better description of the 
kinomic signal (See Discussion). That superiority is reinforced by the 
distribution of the sum of square deviations for each fit (2863 points x 3 
models) depicted in Figure 3b, where equation 3 is observed to lead to 
narrower residual distributions. Peak residual densities occurred at the 

Figure 2: Screenshot of http://kinome.github.io/demo-cf/#model. The pictured tool is able to compare the three models utilizing any sample data. The top left is the 
editable data, the top right is the equation selection tool, and the bottom is the data and curve fit. Data is interactive, data points can be removed by clicking them, 
and their x, y-values are displayed on mouse over.

https://developer.chrome.com/devtools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
http://kinome.github.io/demo-cf/#model
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following points: eq1- (60.7, 0.00866); eq2- (56.8, 0.00932); eq3- (52.8, 
0.0112). While the differences presented are minor, it is important to 
note that equation 3 improves upon equation 2 while reducing the 
number of parameters from 4 to 3. 

Reproducibility

The variability of the kinomic signal was assessed by analyzing 
two sets of 6 technical replicates. Based on the above results models 2 
and 3 were investigated for the reproducibility of their key parameters. 
Each model was filtered individually by QC (methods), and then vini, 
the value typically utilized in current publications, was calculated for 
model 2 as follows:

( ) 0-k (35-c )
ini maxv = y 35 = k' y e ⋅⋅ ⋅

These values were non-parametrically pre-processed by replacing 
raw values by the corresponding quantiles, for k, vini and ymax from 
model 2 and vi and ymax from model 3. The combined sets of technical 
replicates had the following quantile-quantile correlations: cor(q – q: 
equation 2, k) =0.7101; cor (q – q: equation 2, ymax) =0.8569; cor (q - 
q: equation 2, vini) =0.9359 (not pictured); cor (q – q: equation 3, vi) 
=0.9352, cor (q - q: equation 3, ymax) =0.7751. Equation 2 had a total 
of 1252 (of 1728) successful fits and Equation 3 had a total of 1503 (of 
1728) successful fits. The results obtained are presented in Figure 4. 
These results indicate ymax is more reproducible for model 2 than model 
3. However the stability of this parameter is low for both models. This 
instability is due to the large number of curves produced remaining in 
a near linear or linear phase. This results in ymax values that far exceed 
the boundaries of the data presented and reinforces the idea that ymax 
should not be utilized for comparative analysis. The reproducibility of 
the key parameter for equation 3 (vi) is a substantial improvement over 
the key parameter for equation 2 (k). Interestingly, the reproducibility 
of vini as calculated from equation 2 is a slight improvement 
(Correlation difference of 0.005) over that of the vi from equation 3. 
More importantly, vini is more reproducible than the parameters utilized 
to calculate it. This indicates that the parametric stability for equation 2 
is low even though the estimation early slope is stable.

Discussion
The kinome represents a very functional subset of the genome and is 

of high interest to academia and pharma. Kinases are highly druggable 
and kinase targeted agents have generated very promising results in the 
clinic, particularly in proliferative diseases. However, the enzymatic 
nature and “promiscuity” of kinases produces significant challenges 

to studying the kinome. Indeed, an individual kinase typically targets 
multiple substrates with varying affinities while substrates are often 
targeted by more than one kinase. Enzymatically, this can be seen in 
the non-linear curves generated by the time series PamStation data. 
The velocity of the reaction and shape of the curve will vary based 
on the kinase (or kinase family) and substrate affinities. Biologically, 
this manifests as molecular redundancy where multiple signals can 
converge on the same target protein. 

Of the three models investigated the three-parameter rational 
model for eq3 most closely described the data for the following reasons: 

(1)	 Having the highest peak for the deviation plot and for the model 
sum of square deviations (Figure 3). 

(2)	 Having the highest success rate using the curve fitting algorithm, 
64.5% (+3.9% over eq2, mixed quality data), and 87.0% (+14.5% 
over eq2, high quality data) as determined by WW runs test 
(Methods). This indicates a higher randomness in the non-
parametric distribution of residuals for eq3.

(3)	 Utilizing only three parameters to describe the model. Based on 
the above metrics, the four-parameter exponential model (eq2) is 
the second best option; however the higher number of parameters 
reinforces the use of eq3.

(4)	 Having the key parameter with the highest reproducibility. The 
reproducibility of the key parameter, vi from model 3 is significantly 
higher than that of k from model 2 (+31.7%). 

(5)	 Qualitatively, rational models are commonly used in enzyme 
kinetics with one limiting reaction, while exponential models are 
utilized for first order reaction with one reagent.

Generally adding parameters to a model decreases the error 
in residuals by allowing additional variability to be accounted for. 
However when moving from the four-parameter eq2 to the three-
parameter eq3, we do not see worsening of residuals, nor a decrease 
in reproducibility. In fact we observe the opposite. This decrease in 
parameter space becomes particularly important when considering 
individual fits contains only 13 points. This move then represents an 
11% increase in the degrees of freedom with an overall improvement 
in multiple goodness-of-fit metrics. It is important to note, previously 
published kinetic studies focus on the calculated value: vini. Our 
analysis indicates, when calculated from eq2, the reproducibility of vini 
is nearly equivalent to that of the comparable parameter, vi from eq3. 

Figure 3: Graphical representation of residual variation in background fluorescence versus cycle (see Figure 2) for the three models. eq3 can be seen as the solid 
blue line in both panels of the figure as the highest peak. eq2, and eq1 peak lower respectively and can be seen to follow eq3 as a dotted and a slash dot line in 
both panels. These lines were generated by fitting 36 PTK experiments (see Methods) to all three models. Following quality control 2863 fits remained across all 
three models; deviations were calculated and plotted for density.
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Once again, eq3’s use of one less parameter to produce equivalent or 
improved parameterization solidifies the suggested use of eq3.

This is the first time, to the authors’ knowledge, that even a 
preliminary assessment of the variability and reproducibility of the 
PamGene PamChip® has been investigated in the literature. Since 
future goals include tailoring cancer treatments to patients, a thorough 
investigation of this nature is necessary. In addition to the reproducibility 
of the data itself, the reproducibility and accuracy of the analysis itself is 
equally important. To this end all data analysis procedures were coded 
as web applications - that is, they are available as JavaScript scripts, in 
the open source and versioned environment of GitHub (see results 
and methods). The relevant feature of this approach, which we have 
explored and discussed in bioinformatics applications ranging from 
image analysis [32] to sequence analysis [33], is that the analysis can 
be repeated in any web browser, with easily open reviewable code, and 
without need to download nor install any components. In a nutshell, 
this creates lasting reproducibility that does not depend on server-side 
resources maintained by the authors of this report, nor requires any 
client-side configuration by users of the tools.

Conclusion
Kinomic signals, as assessed by the PamGene platform, are 

accurately described as a rational hyperbolic function, not dissimilar 
in shape to Michaelis–Menten. This conclusion is presented here not as 
an alternative to noise filtering approaches followed by some software 
packages but, on the contrary, to inform the noise structure associated 
with the kinomics signal. Our original hypothesis that a non-exponential 
model would be provide a superior parameterization has been verified 
by an at least equivalent fit with a smaller parameter space, an essential 
characteristic given the limited data points per fit. A web application 
was developed and is made publicly available in an open source 

format to allow dissemination of libraries needed to parameterize the 
corresponding hyperbolic model. The reliance on the scripting language 
of the web, JavaScript, to develop those libraries, and depositing them 
in versioned GitHub pages is argued to maximize the reproducibility 
and reuse of the libraries developed. The main remaining challenge 
of the parameterization of kinomics signals appears to be associated 
with the robustness of the non-linear regression. Improvements in the 
parameterization procedure will decrease the number of individual 
kinomic signals that currently do not pass quality control.
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