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Abstract
A mechanistic mathematical model for radiotherapy is developed to study the effect of tumor repopulation on 

radiation treatment outcome. The Two-Lesion Kinetic (TLK) model is adopted to describe the interaction between 
ionizing radiation and malignant cells, and extended in this work to take into account tumor proliferation. The 
investigated kinetics for tumor cells growth includes exponential, logistic and Gompertz laws, while standard 
fractionation treatments are considered as case studies. Scaling analysis is used for non-dimensionalizing the system 
of ordinary differential equations describing the process under investigation. Numerical solution of the proposed 
model is shown as a function of the dimensionless variables and groups generated by the scaling procedure. The 
latter allows minimizing the number of parameters needed to describe the radiotherapy process when DNA damage 
formation and repair, and tumor repopulation phenomena take place simultaneously.

The effectiveness in tumor eradication is mapped as a function of two dimensionless groups that take into account 
the radiation dose rate as well as the DNA lesions repair and malignant cells repopulation rates. The present study 
illustrates that outcomes of the radiotherapy treatment are strongly affected by the relative rates of phenomena 
simultaneously occurring. In particular, it appears that in order to achieve an effective treatment by keeping as low 
as possible the total dose to be administered, the fractionation scheme should be optimized on the base of the ratio 
between the DNA repair mechanisms and tumor cell growth rates. Model results also show that exponential and 
logistic kinetics yield similar results in terms of treatments outcomes. By comparison, model simulations with the 
Gompertz law indicate that repopulation described by this growth kinetics result in a significantly poorer prognosis for 
tumor eradication than either exponential or logistic models.

Keywords: Modeling; Kinetics; Radiotherapy; Repopulation; DNA
lesions repair 

Introduction
Radiotherapy is a common treatment for cancer, which aim is to 

destroy malignant cells with radiation while limiting the damage to 
nearby normal (healthy) cells [1]. If tumor cells respond to irradiation 
at lower doses than normal tissue, then a therapeutic window exists, 
in which a variety of treatment protocols can be used to eradicate the 
tumor while sparing healthy tissues. However, a therapeutic window 
may be nonexistent if tumor and normal tissues respond similarly to 
irradiation [2]. Despite the steady increase in our molecular knowledge 
of tumor cells, most treatment strategies, including radiotherapy, do 
not affect cancer cells uniquely but all proliferating cells. Radiotherapy 
is typically successful because host cells are for the most part non-
proliferative and have better repair mechanisms than tumor cells [1].

The time course of radiation dose delivery affects the results in 
many ways. For example, given the total prescribed dose, prolonging 
treatment over a number of weeks allows time for repair of radiation 
damage to surrounding normal tissue [3]. It may also favor tumor 
resensitization because cellular radiosensitivity is enhanced by 
time-dependent processes such as cell cycle progression or tumor 
reoxygenation [4]. Furthermore, one should keep the overall time as 
short as possible to avoid excessive tumor proliferation, and many 
clinical results already underscore the importance of this factor [5].

Any attempt to determine desirable dose timing needs then to 
balance several factors, which often oppose each other [6]. The only 
tool potentially capable of handling the entire picture is mathematical 
modeling. It can play a crucial role in developing the tumor radiological 
cure by giving vital insights into whether a particular treatment 
schedule may be suitable or not to be used in a clinical setting [6]. 
The results of such modeling can also potentially inform the radiation 
oncologist on how to tailor treatment plans for individual patients. 
Mathematical models, also known as in silico models, can be further 

utilized to predict the success or failure of virtual and novel treatment 
protocols [7,8].

Mathematical modeling of radiotherapy comes in various degrees of 
complexity depending on the well-established five "R's" of radiobiology 
that are incorporated into the models, i.e., the four "R's" by Withers, i.e., 
Repair, Repopulation, Redistribution and Reoxygenation [9] and more 
recently Resensitization [10]. However, of the five R's of radiotherapy 
that exist, it has emerged from clinical studies that repopulation is one 
of the most significant factors that can provide insight into the lack 
of efficacy of radiation treatment [11]. This is because radiotherapy 
treatment schedules are fractionated to allow normal tissue to repair 
and recover from irradiation. During these periods of recovery and 
rest, surviving clonogenic cells of the tumor also repair and repopulate, 
which may result in the failure of the treatment. Indeed, the nature of 
the re-growth of particular tumor concerned is expected to influence 
the outcome of a specific treatment schedule [12,13]. As an example, 
optimum fractionation schedules for treatment of head and neck cancer 
or non-small cell lung cancer depend critically on the proliferative 
nature of the tumor cells [11]. In these cases, tumors proliferate so fast 
that shorter schedules are required [14].

Clearly, mathematical modeling of radiotherapy treatments 
will be more accurate if repopulation effects are included based on 
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where the hazard function h can be expressed in terms of the well-
known survival probability, S, i.e., the expected fraction of the cells 
capable of producing viable progeny after irradiation [6]

1( )
( )

dSh t
S t dt

= 				                 (7)

With the aim to express the survival probability S at time t, the 
mechanisms underlying the interaction between cells and radiation 
should be taken into account. When ionizing radiation strikes a cell, 
Double Strand Breaks (DSBs) and other lesions are produced in DNA 
within a characteristic time less than a millisecond [30]. Thereafter 
some of the damages are processed more slowly, in enzymatic repair 
or misrepair reactions, whose outcome determines the fate of the cell.

In this work, the Two-Lesion Kinetic (TLK) model, which was 
proposed to make a better link between biochemical processing of 
DSBs and cell killing, is adopted [26]. A defining feature of the TLK 
model is that the family of all possible DSBs is subdivided into simple 
and complex DSBs, and each kind of DSB may have its own unique 
repair characteristics. Simple DSBs (type 1) are assumed to be a section 
of the DNA 10 to 20 base pairs in length that contains a break in both 
strands of the DNA. On the other hand, a complex DSB (type 2) is 
a simple DSB that contains additional elementary damage sites (base 
damage, strand breaks, base deletion, etc.) within the same section of 
DNA. Break-ends associated with both kinds of DSB are also allowed 
to interact in pairwise fashion to form irreversible lethal and non-lethal 
chromosome aberrations.

Taking advantage of this description, a mechanistic model based 
on a system of ordinary differential equations to link formation and 
repair of DSBs induced by radiation to cell killing was developed 
[26]. The most general form of the TLK model uses 16 biologically 
significant parameters to relate biochemical processing of the DSB to 
mutagenesis and cell killing. However, in this work it has been used a 
variant of the TLK model that retains most of the central features of 
the full model, while reducing the number of parameters from 16 to 
10 [31]. More specifically, the following pair of nonlinear differential 
equations models the time-dependent evolution of the DSBs created 
and then repaired, misrepaired or fixed:

( )1
1 1 1 1 1 22dL DY L L L L

dt
λ η= Σ − − +  		               (8)

( )2
2 2 2 2 1 22dL DY L L L L

dt
λ η= Σ − − + 	                                (9)

where D  is the instantaneous absorbed dose rate, 1L  is the expected 
number of simple (type 1) DSBs per cell and 2L  is the expected 
number of complex (type 2) DSBs per cell. The initial DSB yield Y 
represents the number of bps per cell (the factor of 2 converts bp to 
number of nucleotides), and iΣ  are the DSBs formation probabilities. 
The parameter iλ  characterizes the rate at which lesions (DSBs) are 
removed by rejoining the break-ends formed in DNA molecules. 
This is attained through biochemical enzymatic processes that repair 
individual simple or complex lesions. DNA damages may be also 
removed through a pairwise (quadratic or binary misrepair) damage 
interaction process whose rate is expressed by η . Thus, both iλ  and 
η  can be related to the expected amount of time required for a cell 
to remove DSBs generated by radiation through the corresponding 
repair mechanisms. The biophysical interpretation of these parameters 
is discussed in more detail elsewhere [26].

the biological proliferation rate of the tumor. As a consequence, 
mathematical models including this aspect may be clinically useful 
in predicting response to therapy [15]. This may also lead to a better 
understanding of clinical implications of the different re-growth laws 
that may be acting during the course of radiation treatments of cancer 
and therefore repopulation should be considered during their planning 
[11].

The debate on the importance of repopulation effects has led to 
several models with specific growth laws being proposed to describe 
tumor proliferation and re-growth [16-25]. The purpose of this article 
is then to provide a contribution in radiobiological modeling applied 
to external beam radiotherapy. In particular, the Two-Lesion Kinetic 
(TLK) model for describing radiation cell killing is adopted [26]. In 
this work, the TLK model is extended for the first time, at the best 
of author’s knowledge, to include the role of cellular repopulation 
during radiotherapy treatments. In addition, a minimum parametric 
representation of this process is obtained by applying a scaling analysis 
[27]. This approach allows mapping out the relevant scenarios that can 
occur during radiotherapy when radiation damages formation and 
repair, and tumor repopulation phenomena take place simultaneously.

Mathematical Model
Let N denote the number of clonogenic tumor cells of the 

population to be studied. The following ordinary differential equation 
can be written to describe its dynamics:

( , ) ( , )dN B N t H N t
dt

= − 				                (1)

along with the initial condition

0NN =  @ 0=t 				                 (2)

The functions B and H represent the birth rate of the cells 
population and its radiation-induced death rate, respectively. It is worth 
mentioning that the natural cell death rate was neglected in this work. 
The reader should refer to the nomenclature section for significance of 
symbols appearing in the text.

The birth rate represents the tumor cells growth, which has been 
mathematically described in the literature by several expressions. In 
particular, it has been reported that exponential growth provides a very 
good approximation to the kinetics of early stage tumor growth, but 
loses accuracy at larger tumor sizes. Indeed, it has been found that the 
tumor growth rate will be slowed as the tumor reaches a larger size, 
being in this case better modeled by a logistic or Gompertz law [28]. 
With the aim not to limit the investigation to a specific kinetics, in this 
work tumor growth in terms of cell population has been modeled by 
using all the following kinetics:

NkB B= 					                    (3)







 −=

K
NNkB B 1 				                  (4)

lnB
KB k N
N

æ ö÷ç= ÷ç ÷÷çè ø
				                  (5)

which express the exponential, logistic and Gompertz law, respectively 
[29].

The radiation-induced death rate appearing in Equation 1 embodies 
the effects of radiotherapy on tumor cells population. Explicitly, the 
function H can be defined as 



Page 3 of 11

Citation: Locci AM (2015) Mechanistic Modeling of Tumor Repopulation during Radiation Treatments. J Chem Eng Process Technol 6: 226. 
doi:10.4172/2157-7048.1000226

Volume 6 • Issue 2 • 1000226
J Chem Eng Process Technol 
ISSN: 2157-7048 JCEPT, an open access journal 

phenomena taking place during the investigated process.

The scaling analysis procedure for the system under investigation 
is illustrated in the next. Let us define the following dimensionless 
variables

s

r

L
LL −

=Λ 					                 (16)

s

r

N
NN −

=Ν 					                  (17)

st
t

=τ 					                (18)

where the subscripts r and s represent the reference and the scaling 
values of corresponding variables [27]. Hereafter, upper- or lower-case 
Greek letters will indicate dimensionless variables or groups of them. 
By setting 0== rr NL , 0NNs = ,

ϕ)1(
1
a

Ls −
= 					                (19)

and

B
s k

t 1
= 					                  (20)

the following dimensionless governing equations can be derived

( )2( )d
dτ
Ν

= ΝΦ Ν − ΝΒ Λ + ∆ΧΛ 		             	             (21)

2d
dτ
Λ

= Α − ΒΛ − ΧΛ 			                                 (22)

It should be point out that Equation 20 implies that the 
characteristic time of cell growth is adopted as time scale of the process 
under investigation. This choice stems out being the aim of this work 
to analyze the effect of tumor repopulation during radiation treatment.

The function )(ΝΦ  appearing in Equation 21 represents the 
dimensionless form of the tumor cells growth kinetics. Specifically,

1

1

ln

ìïïïïïïïï Nï -ïïF= Eíïïïïïï æ öEï ÷çï ÷çï ÷÷çè øï Nïî

	           				                (23)

depending on the exponential, logistic, or Gompertz growth kinetics, 
respectively, is adopted.

The dimensionless groups appearing in Equations 21 and 23 have 
the following expression

4 (1 )

B

D a
k

ϕΥΣ −
Α =


				                   (24)

Bk
λ

=Β 					                (25)

The number of lethal lesions or genetic alterations is modelled by 
the following equation [31]

2f
1 1 1 1 2 2 2 2 1 2

dL (1 a ) L (t) (1 a ) L (t) L (t) L (t)
dt

ϕ λ ϕ λ γη  = − + − + +      (10)

where a1 and a2 represent the fidelity of the linear misrepair 
mechanisms for type 1 and type 2 DSB, respectively, (e.g., ai=1 indicates 
correct repair). The probabilities iϕ  and γ  partition misrepaired 
damages into lethal and non-lethal genetic alterations (e.g., iϕ =1 
means that linear misrepair of a DSB always produces a fatal lesion).

Once the number of lethal lesions or genetic alterations (point 
mutations or chromosome aberrations) per cell fL  is obtained, the 
survival probability can be expressed as follows [26]:

( )fLtS −= exp)( 				                (11)

and by combining Eqs. (6), (7) and (11) it can be obtained that

( ) ( ) fdL
H t N t

dt
= 				                (12)

Although the TLK model may suffice to link biochemical processing 
of the DSB to cell killing, the number of parameters used in this model 
can be prohibitive for some applications, if the parameters are treated as 
purely ad hoc [31]. Through the use of biologically meaningful equality 
and inequality constraints, the number of free parameters used in the 
TLK can be effectively reduced to a level comparable to the classical 
LQ or other models. In particular, the standard, three-parameter LQ 
model can be mimicked using the TLK formalism by imposing the 
equality constraints: 21 aa = , 21 ϕϕ = , 21 λλ = , and 21 Σ=Σ  [31].

By using these simplifications, Equations 8-9 are summed up to 
obtain the following equation

24dL DY L L
dt

λ η= Σ − − 				                (13)

where L  represents the total number of DSBs expected per cell. 
Equation 10 can be also rewritten as 

2fdL (1 a) L L
dt

ϕλ γη= − + 			              (14)

Substituting Equation14 into Equation 12 the balance equation for 
the number of clonogenic tumor cells can be expressed as 

2dN B N (1 a) L L
dt

ϕλ γη = − − +  			              (15)

The system of non-linear ordinary differential equations 13 and 15 
completely described the radiotherapy treatment when repopulation 
occurs simultaneously to cell killing induced by radiation. However, 
this mathematical model depends on 8 parameters. In order to 
obtain a minimum parametric representation of this process, a 
scaling analysis is applied in this work [27]. Briefly, scaling analysis 
deals with a systematic method for non-dimensionalizing a system 
of describing equations of the process under investigation. By the 
resulting dimensionless system of equations it means that the solution 
for any quantity that can be obtained from these equations will be at 
most a function of the dimensionless independent variables and the 
dimensionless groups generated by the scaling process. This minimum 
parametric representation of the process is useful since it identifies the 
dimensionless variables and groups that can be used to correlate data 
from laboratory or numerical experiments (i.e., computer simulations). 
Moreover, it can be assessed the relative importance of the various 
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(1 )a
η

ϕλ
Χ =

−
				                  (26)

ϕ
γ

)1( a−
=∆ 				                (27)

0N
K

=Ε 					                  (28)

The parameter Α can be interpreted as the ratio between the DSBs 
production rate and the tumor cell proliferation rate. Therefore, high 
values of Α (say greater than one) mean that DNA lesions are produced 
faster than tumor cell increases in number. The opposite holds when Α 
is smaller than one. On the base of its expression, Α can be also identified 
as the dimensionless DSBs production rate. Similar considerations 
can be made on the parameter Β. Indeed, it is the ratio between the 
rate at which damages are repaired by the linear mechanism and 
the tumor growth rate. Again, higher values of Β imply that lesions 
are repaired faster than tumor cells repopulate. Moreover, Β may be 
regarded as the dimensionless linear repair rate. Following the same 
line of reasoning, the dimensionless parameter Χ defined by Equation 
26 represents the ratio between the rate of binary misrepair and linear 
repair mechanisms. This implies that high values of Χ correspond to 
a faster binary misrepair mechanism with respect to the linear one. 
Clearly, the opposite holds in the case of low Χ. The parameter ∆ is the 
ratio between probabilities of binary and linear repair mechanisms to 
generate a lethal DNA lesion. Finally, the parameter Ε can be taken as 
the dimensionless carrying capacity.

The instantaneous dose rate D  appearing in Equation 13 is 
dependent on the total radiation dose D prescribed by clinical protocol 
and on the treatment schedule adopted. In particular, the following 
relationship holds 

0

( ) ( )
T

D T D t dt= ∫  				                (29)

being T the entire period of treatment. However, in tumor radiotherapy 
using external beams a wide variety of protocols is employed. Thus, in 
this work, a general expression of the dose rate D  is derived in order to 
increase the applicability of the proposed model. 

The treatment time T can be divided into a number n of cycle 
consisting of an irradiation period (hereafter identified as tSession) followed 
by a recovery time. The latter is a period during which radiation is not 
delivered and normal (healthy) tissues are allowed repairing radiation 
damages. It descends that the cycle time tCycle is given by

n
TtCycle = 					                 (30)

Taking advantage of the parameters defining the irradiation 
schedule reported above, the dose rate may be expressed as follows:

int int

0 int int 1

Session

Session Cycle Cycle Cycle Cycle

Session

Cycle Cycle Cycle Cycle Cycle

tD t t tif
nt t t t t

D

tt t t tif and
t t t t t

      
≤ ≤ +                 

= 
         > + < +                      

   (31)

where "int" indicates the function giving the integer part of a real 

number as a result. It may be realized from Equation 31 that the same 
total dose and dose rate can be imposed to the system with different 
treatment schedule by appropriately varying the parameter n and tSession.

A dimensionless version of Equation 31 can be now derived by 
using Equations 15 and 21. Specifically, it can be obtained that

* int int

0 int int 1

Session

Cycle Cycle Cycle Cycle

Session

Cycle Cycle Cycle Cycle Cycle

if

if and

ττ τ τ
τ τ τ τ

ττ τ τ τ
τ τ τ τ τ

      
Α ≤ ≤ +                 

Α = 
         > + < +                      

  (32)

being *Α  defined as 

* 4 (1 )

B Session

D a
k nt

ϕΥΣ −
Α = 				                 (33)

The dimensionless mathematical model presented in this section 
was solved by means of the commercial software COMSOL Reaction 
Engineering Lab 1.4. Absolute and relative tolerances adopted in the 
calculation were both equal to 1·10-10, whereas initial and maximum 
steps were set to 1·10-9 and 0.01, respectively.

Model Results and Discussion
Numerical results of the dimensionless model presented in the 

previous section are illustrated in the following. The initiation of 
radiotherapy was set by τ=0, while Ν=1 represents the population of 
clonogenic tumor cells at the beginning of the treatment. For an initial 
investigation, the exponential growth kinetics was selected while the 
following set of values was given to the model parameters: Α*=10; 
Χ=0; ∆=0; τSession=1;  τ cycle=1; Τ=1. On the other hand, the parameter 
Β was varied in the range 0.01-100. Recalling Equation 22, it is worth 
repeating that high values of Β indicate faster DNA damages fixation 
with respect to cells proliferation. Conversely, low Β values mean that 
tumor cells repopulation has a higher rate than the one of DNA lesions 
linear repair mechanism.

Figure 1a displays the time (dimensionless) evolution of the tumor 
cell population for selected values of the parameter Β. It can be seen 
that when Β=0.01 the number of tumor cells keeps increasing even if 
radiation is delivered (Α*=10) to the population. When the parameter 
Β is equal to 0.1, the tumor cell population grows with a rate that 
decreases as the treatment time is prolonged up to τ=Τ. A different 
behavior can be obtained when Β is set to 1. The number (dimensionless) 
of tumor cells increases up to reach a maximum at τ equal to about 0.1. 
Then, cell population starts to shrink as a consequence of the higher 
number of cells killed by DNA damages with respect to the number 
of new cells formed by proliferation. However, it can be observed that 
the number of tumor cells at the end of the radiation treatment, i.e., 
τ=Τ, is still significant. This means that the radiation dose delivered 
(taken into account by the parameter Α) does not result in an effective 
treatment if the values of Β (which can be understood as the biophysical 
characteristics of the tumor) is less than or equal to one. On the other 
hand, the same treatment can be effective for tumor populations whose 
biophysical characteristics give higher values of the parameter B. More 
specifically, when B is equal to or higher than 10, it can be seen in 
Figure 1a that the number of tumor cells decreases to negligible levels 
during the course of the radiotherapy. It should be pointed out that 
in this work an effective radiation treatment is defined as the one that 
ends up with N ≤ 0.001 N0, while the reverse defines an unsuccessful 
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(Figure 1b). On the other hand, an increase of the repair mechanisms 
rate increases the chances of misrepair, i.e., the number of lethal lesions 
produced per unit of time because of uncorrected fixation, which, in 
turn, increase the cell killing (Figure 1a).

The effect of parameter Β was also investigated by varying the 
modality to administer the same dimensionless total dose (Α*=10) 
of the previous case. In particular, the following radiation administer 
parameters were adopted: τSession=0.1; τcycle=1; Τ=10. Parameters Χ 
and ∆ were set equal to zero also in this case. Figure 2a shows the 
results obtained by varying Β in the range 0.01–100. A semi-log plot 
is adopted in order to highlight the different behavior of the system 
as Β varies. The two lower values of Β give an increase of the tumor 
cell population during the radiation treatment. This is due to low rate 
of DSBs repair with respect to the proliferation rate, which signifies a 
low production of fatal lesions. As Β is increased to 1, the tumor cell 
population approaches a steady state because of the balance between 
the cell birth rate and the cell killing rate due to radiation exposure. 
An oscillatory behavior appears when B is set equal to 10. In this case, 
the dimensionless number of tumor cells oscillates around an average 
steady state value. This behavior is due to the decrease of tumor cells 
number during irradiation periods, followed by an increase during 
recovery time. Further increase of Β does not significantly affect the 
average number of malignant cells, even if a more abrupt decrease of Ν 
may be observed during the irradiation periods.

The time evolution of dimensionless number of lesion per cell 
corresponding to the tumor population temporal profiles shown in 
Figure 2a is plotted in Figure 2b. It can be seen that Λ oscillates for 
each of the selected values of Β. This behavior arises from the fact that 
radiation is supplied during only one tenth (τSession=0.1) of the total 
cycle time (τ cycle=1). This means that during the first part of the cycle, 
lesions are produced and repaired, thus determining an increase of Λ. 

treatment. Although this choice may appear arbitrary, other possible 
definitions may be adopted without any change in the structure of the 
proposed model.

The corresponding dimensionless number of DNA lesions per cell 
as a function of the dimensionless time generated during the radiation 
treatments is shown in Figure 1b. It may be firstly seen that the number 
of lesions per cell decreases as Β is augmented. In addition, Figure 1b 
clearly shows that Λ steadily increases as function of time for Β ≤ 1 while 
the number of lethal lesions per cell reaches a stationary value when Β 
is greater than 10. In order to explain this behavior it can be useful 
to recall the two opposing phenomena that determine the number of 
lesions per cell. More specifically, radiation delivery produces DSBs 
that tumor cells attempt to repair by different mechanisms [26]. As 
expressed by Equation 22, higher values of the parameter B imply high 
rate of the repair mechanisms that, in turn, result in lower number 
of lesion per cells. In addition, as Β increases the lesions repair rate 
can equate their production rate represented by the parameter Α in 
Equation 19, which lead to the stationary values of Λ shown in Figure 
1b.

By comparing Figures 1a and 1b, it can appear quite puzzling 
that when the radiation treatment results more effective the number 
of lesions per cell is lower. With the aim to clarify this finding, it is 
worth mentioning that the TLK model does not consider the possibility 
that a fatal lesion can be directly produced by the ionizing radiation 
[26]. Indeed, a lethal lesion, i.e., a lesion resulting in cell killing, is a 
consequence of attempts by the cell to fix or repair the DSBs produced 
by radiation exposure. Therefore, an increase of the parameter B acts 
in two different directions. At one hand, it increases the relative rate 
at which the lesions are repaired thus reducing their number per cell 
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Figure 1: Simulated temporal evolution for selected values of the model 
parameter Β of a) tumor cells population and b) DNA lesions per cell, (τSession 
= 1; τCycle = 1; Τ = 1).
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Figure 2:	 Simulated temporal evolution for selected values of the model 
parameter Β of a) tumor cells population and b) DNA lesions per cell, (τSession 
= 0.1; τCycle = 1; Τ = 10).



Page 6 of 11

Citation: Locci AM (2015) Mechanistic Modeling of Tumor Repopulation during Radiation Treatments. J Chem Eng Process Technol 6: 226. 
doi:10.4172/2157-7048.1000226

Volume 6 • Issue 2 • 1000226
J Chem Eng Process Technol 
ISSN: 2157-7048 JCEPT, an open access journal 

Conversely, Λ decreases during the second part of the cycle since only 
fixation of residual lesions takes place. Moreover, it may be observed 
that the higher is the value of Β, the stronger is the effect of the repair 
mechanism on the global dynamic of DNA lesions. These findings may 
be also related to the oscillatory behavior of Ν shown in Figure 2a. An 
increase in the number of lesion per cells also increases the fatal lesions 
generated by repair mechanisms, which, in turn, increases cells death 
rate. On the other hand, the subsequent decrease of Λ occurring during 
the recovery time makes the repopulation phenomenon predominant. 
However, it should be noted that for low values of Β the tumor growth 
rate is too fast to be affected by radiation, which can explain the 
occurrence of oscillation in tumor population only for high values of 
Β. Regarding the effectiveness of the treatment, Figure 2a reveals that 
none of the investigated values of Β results in the tumor eradication.

Similar findings in terms of treatment effectiveness are obtained 
by setting the radiation exposure parameters as follows: τSession=0.01; 
τCycle=1; Τ=100, i.e., when the dimensionless total dose is further 
fractionated. In particular, Figures 3a and 3b show the time evolution 
of Ν and Λ, respectively, where the same values of the previous cases 
for the other model parameters are maintained, i.e., Α* =10, Χ=0; ∆=0. 
The tumor population increases from its initial value regardless the 
value of Β adopted in the simulation. This is because the number of 
lesions produced during the radiation exposure periods is too low to 
affect the tumor growth. Indeed, with this dose fractionation, tumor 
cells have much more time to grow unrestrained, thus increasing their 
number. An oscillatory behavior of Λ can be observed also in this case 
(Figure 3b).

Results reported in Figures 1-3 show that radiation administer 
schedule strongly influences the effectiveness of the treatment. For 

instance, by setting Α* and Β both equal to 10, radiotherapy results 
in eradication of the tumor in the case of no fractionation (Figure 1a), 
while a significant number of tumor cells is present at the end of the 
treatment when the total prescribed dose is fractionated (Figures 2a and 
3a). However, results of a series of numerical simulations performed to 
investigate the effect of fractionation by varying both parameters Α* and 
Β proved that this finding could not be generalized. More specifically, 
the simulated time evolutions of the tumor population obtained by 
setting Α*=100, Β=10; Χ=0; ∆=0 for three different dose delivering 
schedules are reported in Figure 4. It can be seen that an effective 
treatment is attained in the case of τ Session=1; τcycle=1; Τ=1 and τSession=0.1; 
τ cycle=1; Τ=10. On the other hand, radiotherapy did not result in tumor 
eradication when the total dose was imposed according to the schedule 
specified by the following parameters τSession=0.01; τcycle=1; Τ=100. In 
fact, it can be seen in the latter case that Ν shows an oscillating behavior 
around an average stationary value greater than one.

A different outcome was obtained by setting the following model 
parameters set Α*=75; Β=0.1; Χ=0; ∆=0. The dimensionless number of 
tumor cells is plotted in Figure 5 for the three investigated radiation 
exposures. It may be seen that an effective treatment was obtained by 
simulating the radiation delivering according the parameter τSession=0.1; 
Τ=10. On the other hand, tumor cells are still present when a not 
fractionated scheme (τSession=1; Τ=1) is applied or in the case of dose 
fractionation whose parameter are τSession=0.01; Τ=100. However, 
simulations of higher fractionation schedule show success in tumor 
eradication for the case of Α*=8500; Β=0.0003; Χ=0; ∆=0 as shown in 

Figure 3: Simulated temporal evolution for selected values of the model 
parameter Β of a) tumor cells population and b) DNA lesions per cell, (τSession 
= 0.01; τCycle = 1; Τ = 100).

Figure 4: Simulated temporal evolution of tumor cells population for three 
different radiation treatment schedules (A* = 100; Β = 10; Χ = 0; ∆ = 0; τCycle 
= 1).

Figure 5: Simulated temporal evolution of tumor cells population for three 
different radiation treatment schedules (A* = 75; Β = 0.1; Χ = 0; ∆ = 0; τCycle 
= 1).
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Figure 6, where, conversely, the inefficiency of no fractionated and low 
fractionated schemes is also proved by the corresponding time profiles 
of tumor cells population. It may also notice in Figure 6 that in the case 
of successful outcome a remarkable maximum of tumor cells number 
was reached during the treatment.

The results reported above clearly show that dose fractionation 
can result in successful treatment or not depending on the value of the 
parameters Α* and Β. Or, in other words, given Α* and Β values, the 
success of the radiation cure may depend on the treatment schedule 
adopted. With the aim to obtain deeper insights on this behavior, a 
series of numerical simulations were performed by systematically 
varying Α* and Β, as well as the treatment schedule. The exponential 
kinetics was considered, while the other model parameters Χ and ∆ were 
set both equal to zero. The results of these simulations are summarized 
in Figure 7 where a two-dimensional domain whose coordinates are 
the model parameters Α* and Β is shown. This domain is divided in 
two regions by a curve for each of the investigated radiation delivery 
modes. On the right-hand-side of each curve the region of effective 
treatments extends. Conversely, the points representing the Α*−Β 
pairs, whose values do not result in eradication of the tumor, belongs 
to the not effective treatments regions extending on the left-hand-side 
of each curve. The curves reported in Figure 7 are the loci of Α*−Β pairs 
that lead to a tumor population Ν at the end of the treatment equal to 
0.001. It is worth recalling that the latter condition was used in this 
work to define an effective radiation treatment.

Some considerations can be gained from the analysis of Figure 7. 
Firstly, it can be observed that for low values of Β (say smaller than 

one) the value of the parameter Α* needed to attain effective treatments 
decreases as Β increases. On the other hand, the transition between 
effective and not effective treatment regions tend to occur at the same 
value of Α* as Β becomes higher than 1. This pattern can be observed 
regardless the fractionation scheme of the radiation exposure. These 
outcomes can be also examined recalling Equations 21 and 22. More 
specifically, the dimensionless DNA lesions production rate Α* (which 
quantify the effect of the radiation dose rate) required to eradicate 
the tumor cells decreases as the lesions repair rate increases up to the 
same order of magnitude of the proliferation rate (Β=1). When the 
repair rate is higher than the growth rate, (Β > 1), the DSB production 
rate will result in the same effect in spite of the rate of lesions repair 
mechanism. These findings can be explained as follows. Higher values 
of Β means higher DSB repair rate, which, in turn, gives rise to a higher 
formation rate of lethal DNA damages. This fact reflects on a lower 
lesion production rate (quantified by the parameter Α*) required to be 
the radiation effective in tumor cell killing. On the other hand, higher 
values of Α* are needed when the lethal lesion production rate is lower 
due to the lower rate of repair mechanisms.

A different behavior of the system in the cases of high and low values 
of Β can be examined also with regard to the adopted treatment schedule. 
Figure 7 shows that simulated radiation treatments with higher values 
of Β will result less successful as the dose fractionation is increased. 
This can be appreciated focusing at the shrinking of the effective 
treatment region as Τ and τSession increases and decreases, respectively. 
An opposite effect can be observed for the lower investigated values of 
Β. Indeed, the transition curve shifts to the left as the dose fractionation 
increases. This implies that the same total dose (Equation 21) will result 
more effective when it is delivered fractionated. Such a behavior can 
be explained as follows. By keeping constant the total radiation dose, 
in the case of fractionation, high values of B imply that lesions are 
repaired very soon after the end of the irradiation periods (cf. Figures 
2b and 3b). Thus, cell killing does not take place during the recovery 
time and cell growth occurs unrestrained. On the other hand, when the 
repair mechanism is slow, more time is needed to produce fatal lesions. 
This additional time can be provided by increasing the fractionation, 
which, in turn, leads to a more effective treatment.

It may be a point of interest to analyze the dynamics of tumor cells 
population during successful irradiation schedules as the dimensionless 
repair rate Β varies. Figure 8 shows numerical simulated evolutions of Ν 
as a function of dimensionless time for the three investigated treatment 
schedules. These results are related to Α*−Β model parameters pairs 
whose values identify points on the corresponding transition curves 
reported in Figure 7. Indeed, it can be seen in Figure 8a (τSession=1; 
Τ=1) that all the simulated treatments lead to the eradication of the 
tumor, i.e., Ν=0.001 at τ=Τ. However, the rate of cells decreasing is 
different for the diverse values of Β. Specifically, in the case of higher 
values of Β the tumor population decreases faster during the first part 
of the treatment. Conversely, when Β is low, N slightly increases at the 
beginning of the treatment up to reach a maximum. Then, a decrease 
of the tumor cells number is observed up to the end of the treatment. 
The response of the system in the case of fractionated radiation dose 
(τSession=0.1; Τ=10) is shown in Figure 8b. It may be observed that 
tumor population reaches a maximum during the treatment, being the 
number of cells corresponding to this maximum higher with respect to 
the one observed in case shown in Figure 8a. It may be also seen that 
this maximum increases its value as Β decreases, up to achieve a tumor 
population of the order of about three times the initial population for 
very low values of Β. On the other hand, the tumor cells population 
decreases monotonically for higher values of Β, even if an oscillatory 

Figure 6: Simulated temporal evolution of tumor cells population for three 
different radiation treatment schedules (A* = 8500; Β = 0.0003; Χ = 0; ∆ = 
0; τCycle = 1).

Figure 7: Map of radiation treatment effectiveness as a function of the 
parameters A* and Β (Χ = 0; ∆ = 0; τCycle = 1)
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behavior due to the alternation of irradiation and recovery periods can 
be seen. The different evolution of the system for high or low values 
of the parameter B is a consequence of the repopulation phenomena 
occurring during the treatment. Indeed, higher values of Β make lethal 
lesions quickly produced, thus leading to rapid cell killing. In contrast, 
lower value of Β means a slower formation of fatal lesions in cell DNA. 
This creates the opportunity for clonogenic cells to reproduce making 
the population increases in number. Then, as might be expected, once 
the number of lethal DSBs reaches a proper level, cell killing becomes 
dominant thus decreasing the tumor cell population up to eradicate 
it. A similar response of the system is obtained when the same total 
radiation dose is further fractionated (τSession=0.01; Τ=100). However, a 
more remarkable increase in tumor cells number during the treatment 
and a more pronounced oscillatory behavior can be observed for lower 
and higher values of Β, respectively.

The effect of the parameter Χ on the effectiveness of the simulated 
radiation treatment is illustrated in Figure 9. The latter was obtained by 
means of the same procedure Figure 7 was derived by. The investigated 
kinetics is the exponential one, whereas the other model parameters 

were set as ∆=1; τSession=0.01; τCycle=1; Τ=100. It can be clearly seen 
that an increase of Χ shifts the transition curve to the left, which, in 
turn, make the effective treatment region broader. This finding can 
be explained recalling that an increase of X implies an increasing 
importance of the damages misrepair mechanisms Equation 26. In 
other words, by augmenting X more lethal lesions are produced due 
to the additional contribution of the quadratic terms appearing in 
Equation 21. However, it clearly appears in Figure 9 that this effect 
vanishes as at higher values of the dimensionless linear repair rate 
Β increases. Indeed, in this case the repopulation rate of tumor cells 
is slow enough to make the lethal lesions produced by the linear 
mechanism only sufficient to eradicate the tumor. On the other hand, 
lower values of Β imply higher tumor growth rates. Under these 

Figure 8: Simulated temporal evolution of tumor cells population for selected 
values of the model parameters Α* and Β that gives Ν = 0.001 at the end of 
the treatment (Χ = 0; ∆ = 0; τCycle = 1): a) τSession = 1; Τ = 1; b) τSession = 0.1; Τ = 
10; c) τSession = 0.01; Τ = 100.

Figure 9: Map of radiation treatment effectiveness as a function of the 
parameters A* and Β for selected values of Χ; (∆ = 0; τSession = 0.01; τCycle = 
1; Τ = 100).

Figure 10: Simulated temporal evolution of tumor cells population for 
selected values of the model parameter Χ  (∆ = 0; τSession = 0.01; τCycle = 1; Τ = 
100): a) Β = 1000; b) Β = 0.001.
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conditions the additional fatal lesions produced by misrepair help to 
increase the tumor cells killing by radiation.

Further tests of the model radiation response to variations of the 
parameter Χ were carried out comparing the time evolution of the 
tumor cells population. Figure 10a shows the effect of Χ variation 
when Β=1000. The values of Α* are those corresponding to the Α*-Β 
coordinate pairs of the transitions curves appearing in Figure 9. It may 
be seen that variation of Χ does not significantly influence the time 
evolution of the tumor population. A different behavior is observed in 
Figure 10b where the results related to the case of Β=0.001 are reported. 
All simulations show an increase of the cell population at the beginning 
of the treatment followed by a decrease down to the level that identify 
the eradication of the tumor (Ν=0.001 at τ=Τ). However, the maximum 
number of tumor cells reached during the treatment strongly depends 
on the values of Χ. In particular, it can be seen that the maximum value 
of Ν increases as Χ is increased from zero to 1. Then, a reduction of 
the maximum number of tumor cells during the treatment is observed 
when Χ is increased to 10 and 100. Also this no monotonic outcome 
of the parameter Χ can be ascribed to the opposite effect of repair 
mechanisms in the framework of the TLK model. Indeed, on one hand, 
an increase of the rate of repair reduces the number of DNA lesions in 
tumor cells thus making them clonogenic. The system response will 
result in a higher number of tumor cells. On the other hand, fast repair 
mechanisms can also augment the chance of misrepair, i.e., formation 
of lethal lesions, thus increasing the cell killing and consequently 
reducing the cell population.

The results of simulating radiotherapy treatments by varying 
the parameter ∆ are reported in Figure 11. It may be clearly seen the 
effective treatment region increasing as this model parameter increases. 
This finding can be grasped on the base of the defining equation of ∆ 
(Equation 27). Indeed, it represents the ratio between the probabilities 
of binary and linear repair mechanisms not to result in correct fixation, 
thus leading to lethal lesions formation and cells killing. Therefore, the 
rate of the latter phenomenon increases as ∆ becomes larger.

So far it has been simulated radiotherapy treatments during which 
tumor cells proliferate according to the exponential kinetics. In order 
to make a comparison between the latter and the logistic and Gompertz 
kinetics, another series of numerical simulation were carried out. 
Related results are summarized in Figure 12, which was constructed 
according to the same method adopted in the case of Figures 7, 9 and 
11. It can be noticed that transition curves of exponential and logistic 
kinetics are very similar. Vice versa, a different partition of the Α*−Β 

Figure 11: Map of radiation treatment effectiveness as a function of the 
parameters A* and Β for selected values of ∆ (Χ = 1; τSession = 0.1; τCycle = 1; 
Τ = 10).

Figure 12: Map of radiation treatment effectiveness as a function of the 
parameters A* and Β for the three investigated tumor growth kinetics (Χ = 1; 
∆ = 1; τSession = 0.1; τCycle = 1; Τ = 10).

Figure 13: Simulated temporal evolution of tumor cells population for the 
three investigated kinetics  (Α* = 100, Β = 0.1; Χ = 1; ∆ = 1; τSession = 0.1; τCycle 
= 1; Τ = 10).
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Figure 14: Schematic illustration of possible use of effectiveness map for 
selecting irradiation schedule parameters.

model parameter domain can be observed in the case of Gompertz 
kinetics. Specifically, the associated effective treatment region extends 
less than the other investigated kinetics. It can be also seen that this 
difference becomes larger as Β increases. In addition, Figure 12 shows 
that the effect of the parameter Ε is more marked in the case of the 
Gompertz law with respect to the logistic one. Additional insights of 
this different behavior can be gained by Figure 13 where the evolution 
of tumor cell population following the three investigated kinetics are 
reported. These results are related to the following set of parameters: 
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Α*=100; Β=0.1; Χ=1; ∆=1; Ε=1; τSession=0.1; τCycle=1; Τ=10. It can be 
seen that when the number of tumor cells decreases the repopulation 
phenomenon occurs faster in the case of Gompertz kinetics. This 
will results in longer treatment time to eradicate the tumor. Findings 
illustrated in Figures 12 and 13 are in agreement with the ones 
reported by other authors who investigated the effect of various growth 
mechanisms by using the linear-quadratic (LQ) model to describe the 
radiation-tumor cells interaction [25].

Finally, it may be worth illustrating a possible use of the radiation 
treatment effectiveness map developed in this work. The main goal is 
to reduce the number of experiments needed to ascertain the optimal 
irradiation schedule. The basic idea is schematically represented in 
Figure 14. Once the specific tumor cell line of interest is selected, a 
series of in vitro experiments could be performed to determine the 
kinetic parameters characterizing growth and radiation-induced death 
of tumor cells. Then, dimensionless parameters can be calculated and a 
series of numerical simulations (in silico experiments) is implemented 
to achieve the effectiveness map. This way, representative point of 
possible irradiation schedules may be mapped out through preceding 
calculation of the corresponding A and B coordinates. Thus, at least in 
principle, this procedure leads to a selection of theoretically successful 
treatments to validate experimentally.

Concluding Remarks
The aim of this work was to develop a mechanistic model able to 

describe radiation damages on tumor cells when repopulation occurs 
simultaneously to DNA lesions repair. Whilst the proposed model 
is clearly a gross oversimplification of a highly complex multiscale 
biological system, some information about the effect of repopulation 
during radiotherapy can be gained.

A fundamental role is played by ratio between the rate of 
DNA lesions repair mechanisms and tumor growth rate, i.e., the 
dimensionless parameter Β defined in this work. Specifically, it was 
found that an increase in the fractionation of the total radiation dose 
to be administered results in a less effective treatment for high values 
of Β. Vice versa, for low values of Β better results in terms of tumor 
eradication were obtained by increasing the total prescribed dose 
fractionation. Calculations based on the present analysis also indicate 
that significant variations in tumor population dynamics and radiation 
treatment effectiveness emerge depending on the form of the cells 
growth kinetics. Exponential and logistic growth laws produce similar 
results but the Gompertz kinetics was shown to result in significantly 
less tumor eradication. Moreover, the higher the repair rate of cell line 
with respect to its growth rate, the greater the difference in treatment 
outcomes

It is hoped that this model will provide a useful tool for further 
investigation in the context of external beam radiotherapy. Comparison 
with experimental data reported in the literature is already along the 
way. Future directions of this study would be also the incorporation of 
the other “Rs” of radiotherapy, i.e., reoxygenation, redistribution, and 
resensitization in the framework of the TLK model.

Nomenclature
a 	 correctness coefficient of linear misrepair mechanisms, - ;

B 	 birth rate, h-1;

D	 total dose, Gy;

	 dose rate, Gy h-1;

H 	 radiation-induced death rate, h-1;

h 	 hazard rate, h-1;

K 	 cell carrying capacity, - ;

Bk 	 kinetic constant, h-1;

L 	 number of DSBs per cell, - ;

N 	 number of tumor cells, - ;

n 	 number of cycles, - ;

S 	 survival probability, - ;

T 	 treatment time, h;

t	 time, h;

Cyclet   cycle time, h;

Sessiont  irradiation time, h;

Y 	 DSB yield, Gy-1;

Greek letters

Α 	 dimensionless group defined by Eq. (24);
*Α 	 dimensionless group defined by Eq. (33);

Β 	 dimensionless group defined by Eq. (25);

Χ 	 dimensionless group defined by Eq. (26);

∆ 	 dimensionless group defined by Eq. (27);

Ε 	 dimensionless group defined by Eq. (28);

ϕ 	 partition coefficient of simple (type 1) DSBs, - ;

γ 	 partition coefficient complex (type 2) DSBs, - ;

Λ 	 dimensionless number of lesion per cell, - ; 

Ν 	 dimensionless number tumor cell, - ; 

λ 	 linear repair kinetic constant, h-1;

η 	 binary misrepair kinetic constant, h-1;

Σ 	 DSB formation probability, - ;

τ 	 dimensionless time, - ;

Subscripts
0 	 initial;

1 	 simple (type 1) DSBs;

2 	 complex (type 2) DSBs;

f 	 lethal;

r 	 reference value;

s 	 scaling value;
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