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Abstract

A clinically defined condition characterized by persistent, severe, disabling fatigue lasting more than six months
that is not reversed by sleep is regarded as chronic fatigue (CF). Fatigue is a complex phenomenon determined by
several factors, including psychological health but at the biochemical level fatigue is related to the metabolic energy
available to tissues and cells, mainly through mitochondrial respiration. Fatigue is the most common symptom of
poorly functioning mitochondria. therefore dysfunction of these organelles may be the cause of the fatigue seen in
CF. There is a great progress in the molecular understanding of mitochondrial disorder but the relation of
mitochondrial dysfunction with CF and the underlying mechanism is not identified well in addition treatment of fatigue
is still inadequate. In this review we try to summarize the relation between CF with mitochondrial dysfunction and
determine the underline mechanism.
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Introduction
Chronic fatigue can be defined as an overwhelming sense of

tiredness, which causes lack of energy, reduction in ability of body to
work accompanied by feeling of exhaustion extreme physical or mental
tiredness, resulting from severe stress and hard physical or mental
work. [1-5]. It is different from normal experiences such as tiredness or
sleepiness [4,6]. Fatigue can occur due to several reasons it can appear
with stress or exhaustive exercise. [5,7,8] Fatigue causes various
neurological, psychiatric and systemic diseases, it associated with a
wide variety of conditions such as cancer, HIV infection (AIDS),
chronic inflammatory disorder, Parkinson’s, multiple sclerosis,
amyotrophic lateral sclerosis, aging, and depression [4,9,10].

Chronic fatigue is a severe and distressing phenomenon to the
patient by interfering with the patient’s life, including social
withdrawal, family conflicts and work disability [11,12]. Fatigue is a
common symptom in the community, with up to half of the general
population reporting fatigue in large surveys [13,14]. Worldwide
nearly 10% of the general population suffered due to fatigue [15-18]. It
also is reported by at least 20% of patients seeking medical care [19,20].

There are several different mechanisms for the occurrence of
fatigue. Viral and bacterial, infections, psychosocial and physical
stressors can be important factors for fatigue symptoms [7,9,21-23], it
can also result from exhaustion of energy sources such as glucose and
glycogen due to intense exercise [24-26]. Over accumulation of serum
lactic acid and blood urea nitrogen will also result in metabolic
disorders leading to fatigue [25,27]. Moreover intense exercise can
cause accumulation of reactive free radicals which will lead the body in
a state of oxidative stress and bring injury to the body by attacking
large molecules and cell organs leading to physical fatigue
[24,25,28,29].

Chronic fatigue and mitochondrial dysfunction
Mitochondrial dysfunction is a characteristic of disease. It has been

implicated in nearly all pathologic and toxicologic conditions [30].
Several diseases and conditions are associated with dysfunction of the
mitochondrion, such as Cancer, Alzheimer’s disease, Parkinson's
disease, schizophrenia, diabetes, chronic fatigue syndrome, non-
alcoholic steatohepatitis etc. [31-35].

Fatigue is a complex phenomenon determined by several factors,
including psychological health but at the biochemical level fatigue is
related to the metabolic energy available to tissues and cells, mainly
through mitochondrial electron transport [36], Fatigue is the most
common symptom of poorly functioning mitochondria, The classic
symptoms of persistent and debilitating fatigue, chronic muscle
weakness, and myalgia are consistent with mitochondrial dysfunction
in other diseases of known mitochondrial etiology [2]. Most fatigue
patients report mental concentration impairment and cognitive
deficits, which are also seen in mitochondrial dysfunctions [36,37].
Therefore dysfunction of these organelles may be the cause of the
fatigue seen in chronic fatigue. Thus the integrity of mitochondrial
membranes is critical to cell function and energy metabolism. More
specifically, muscle fatigue with exercise intolerance is a multifactorial
process characterized by failure to maintain an expected level of force
during sustained or repeated muscle contraction, and is considered a
common symptom of mitochondrial diseases [10,29,38-41].

Effect of reactive oxygen species in mitochondria during
chronic fatigue

Mitochondria are crucial organelles for the production of energy by
efficient aerobic energy metabolism and for the control of signaling
cascades and they are suggested as being a primary regulator of
autophagy in skeletal muscle [42] The predominant physiological
function of mitochondria is the generation of energy as a form of ATP
and heat by oxidative phosphorylation Mitochondria produce more
than 90% of our cellular energy trough metabolic processes called the
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Krebs or citric acid cycle, and the electron transport chain (ETC)
[30,33,34].

ROS are generated in all cells undergoing aerobic metabolism,
although multiple compartments and enzymes contribute to the overall
oxidative burden, Mitochondria are known to be a major physiological
source of ROS, which are generated during oxidative phosphorylation
occurring mainly at complexes I and III due to the release of electrons
by NADH and FADH into the ETC [30,43-46]. ROS include several
harmful species, such as superoxide anion (O2−), hydrogen peroxide
(H2O2), and hydroxyl radical (HO−) generated by mitochondrial
respiration, as well as cellular enzymatic reactions in response to
environmental stimuli [30,47].

The cell possesses antioxidant defense systems to counteract
damaging ROS these are enzymatic antioxidants such as catalase,
superoxide dismutase (SOD), glutathione peroxidase, and non-
enzymatic antioxidants such as ascorbic acid (vitamin C), α-tocopherol
(vitamin E) and β-carotene [30,43,48]. Under normal physiological
conditions, this mitochondrial antioxidant defense system can
adequately handles the potentially detrimental effects of ROS derived
from energy metabolism, this cellular free-radical scavenging enzymes
neutralize excess ROS and repair the enzymes that reverse ROS-
mediated damage [36,48]. However, when these enzymes cannot
convert ROS such as the superoxide radical to H2O fast enough,
oxidative damage occurs and accumulates in the mitochondria
[29,30,49].

If the increase in free radicals is greater than the ability to neutralize
them, ROS will attack cellular structures located near the sites where
ROS are generated [30,44,48]. Functional imbalance between ROS
levels and antioxidant concentrations can be caused by various disease
states such as cancer, cardiovascular diseases, brain dysfunction,
inflammatory diseases, neurodegenerative diseases, ischemia-
reperfusion injury, and aging [43,48,50,51].

During the development of chronic fatigue oxidative damage
impairs mitochondrial function. For example, in chronic fatigue
syndrome patients there is evidence of oxidative damage to
mitochondrial DNA and lipids [37]. Alterations of mitochondrial
efficiency and function are mainly related to alterations in
mitochondrial content, Failure in the electron transport system leads to
the production of reactive oxygen species (ROS) such as hydrogen
peroxide that can damage macromolecules and thus lead to
dysfunctional cell components or even apoptosis [52]. Failure to
maintain mitochondrial function results in failure to generate energy
and increased free-radical production, converging mitochondrial
permeability transition, mitochondrial depolarization, intracellular
glutathione depletion and cytochrome c release and this will result
energy impairment, oxidative stress, and also early apoptotic cell
death. The diverse pro-apoptosis stimuli leading to disease [51,53,54].

Effect of inflammatory cytokines on mitochondria during
chronic fatigue
Inflammation is associated with fatigue, it is common in acute

infections as well as fatigue frequently reported among patients with
inflammatory diseases such as multiple sclerosis and rheumatoid
arthritis [4,55,56]. Moreover muscle tissue damage after physical
exercise will induce an inflammatory response, studies have
demonstrated exhaustive exercise can cause flu-like symptoms such as
fever, chills, fatigue, myalgia, headache and appetite loss, these might
be associated with hypercytokinemia [57-59].

The most influential cytokines are considered to be important are
TNF-a, IL-1 and, IL-6 play a big role in the inflammatory response,
and are crucial both in defense against infection and in development of
autoimmune disease [4,59]. Pro-inflammatory cytokines in animals act
on the brain during infection and other inflammatory states to cause
sickness behaviour. This phenomenon is characterized by drowsiness,
loss of appetite, decreased activity and withdrawal from social
interaction and represents a change of behaviour theorized to enhance
survival of infection [4,60,61]. Fatigue in humans could be considered
a part of this biologically triggered coping mechanism.

Psychological stressors can induce the cytokine network and ROS
pathway. ROS elevation as a result of inflammatory responses can
cause damage to membrane fatty acids, functional proteins, DNA or
mitochondria, which further aggravate the fatigue [9,21,62] In cancer
patients, there is evidence that cytokines play a key role in the fatigue.
HIV infection also is characterized by fatigue accompanied by clinical
signs of inflammation [9].

Increased levels of proinflammatory cytokines due to bacterial or
viral infection as well as stress trigger oxidative damage that can
generate fatigue symptoms, including fatigue, a flu-like malaise, pain,
symptoms of irritable bowel syndrome, and neurocognitive disorders
[9]. There is plenty of evidence to indicate the effect Cytokines on
mitochondrial function, Administration of cytokines to smooth
muscle cells in culture reportedly inhibits mitochondrial respiration
[63]. Related evidence suggests that cytokine imbalances occur in
chronic fatigue and other chronic diseases [29,64,65]. Studies by
Chazotte showed cytokine can lower mitochondrial membrane
potential in human cells [2].

Inflammatory cytokine also mediated increases of ROS directly to
inhibit mitochondrial respiration. They have been associated in vitro
with mitochondrial dysfunction and increased ROS generation
reducing complex III activity in the ETC, increasing ROS production
resulting damage to mtDNA, alter mitochondrial membrane
permeability and mitochondrial enzymatic dysfunction and also
associated with muscle fatigue [29,33,66-70].

Tumor necrosis Factor α (TNF-α)
Muscle fatigue was associated with increased serum levels of TNF-α,

studies revealed TNF-α which has a profound effect causing a marked
and prolonged decrease on mitochondrial and cellular bioenergetics
during chronic fatigue. The plasma concentration of TNF-α has been
reported to rise several hours later after the finishing of intensive
exercise though significant increases immediately after exercise were
absent [29,59,67]. TNF-alpha have showed effect on membrane
potentials of human cell lines was examined in relation to a possible
role in CFS [2].

TNF-α level has been shown to be a key element for detection of
mitochondrial dysfunction [30,33,71,72]. ROS have an important
function in cell survival and cell death triggered by TNF-a signaling,
and the main source of ROS generation required for TNF-a-induced
cell death is the mitochondria [70,72,73]. TNF-α results in
mitochondrial dysfunction by reducing complex III activity in the
ETC, increasing ROS production and causing damage to mtDNA
[33,71,73,74]. TNF-α generates ROS at the mitochondrial inner
membrane, which may easily result in the progressive destruction of
the mtDNA, possibly because of its proximity to the site of ROS
production TNFα also decreased complex III activity of mitochondria
which might be because of its higher susceptibility to ROS-induced
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damage or due to decrease of the mtDNA copy number leads to a
decrease in complex III activity decrease [33,71,73,74]. Moreover the
activity of complex I, ATP production, and mitochondrial membrane
potential (Δψm) has shown to be affected due to TNF-α [75].
Therefore, complex I together with complex III have been suggested to
be major sources of ROS. TNF-α displayed to mediate cardiac myocyte
mtDNA damage and mitochondrial dysfunction via the
overproduction of ROS [76]. A study by Corda and his clique revealed
that TNF-α can induces a rapid increase in mitochondrial ROS
production in human endothelial cells [77]. Studies with isolated cells
implicated the effects of pro-inflammatory cytokines TNF-α in the
generation of reactive oxygen species in mitochondria, altered
mitochondrial membrane permeability and in mitochondrial
enzymatic dysfunction as both early events and critical to the
physiological mechanism of TNF-α action [74,76,77].

In addition, Studies with cells treated with TNF-α have recently
shown that the mitochondrial cytochromes are critical targets of TNF-
α action. Ceramide, another mediator of TNF-α function, has been
reported to selectively inhibit complex III activity in isolated cardiac
mitochondria [74]. Moreover, in adipocytes, the changes induced by
TNFα cause pronounced morphological changes in the mitochondria,
presumably due to variations in the levels of several mitofusion
proteins [78].

Summary
Even though fatigue decreases the quality of life in people there are

only few pharmacological drugs or therapies available for the
treatment of fatigue [1,16-18,79]. Vitamins, minerals, and other
metabolites supplementation may be a target Therapies for treatment
of mitochondrial dysfunction and fatigue since they are necessary
cofactors for the synthesis and function of mitochondrial enzymes and
other compounds that support mitochondrial function
[30,38,68,80,81]. Nevertheless the treatment of mitochondrial
dysfunction and chronic fatigue is still inadequate, and their role in the
treatment of the majority of these patients remains unclear.

Science mitochondrial dysfunction relate to almost all kinds of
diseases, also fatigue is a common symptom seen in many kind of
disease mitochondrial target therapy is the best choice for treatment of
multiple disease including fatigue. Generally chronic fatigue is mainly
related to mitochondrial dysfunction by increasing TNF-α level as well
as attacking mitochondrial component through ROS induced lipid
peroxidation and also by triggering damage in both inner and outer
mitochondrial membranes, and disturbing mitochondrial dynamic
network. Further studies needed to be done on in depth analysis of
fatigue targeting mitochondrial dysfunction to determine the overall
molecular mechanism and detailed signaling pathway in relation to
TNF-α induced ROS generation and lipid peroxidation.
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