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ABSTRACT
Complications of Transcatheter Aortic Valve Replacement (TAVR) often result in a need for subsequent permanent

pacemaker implantation. However, the risk factors for delayed pacemaker implantation remain unclear.

Characteristics of TAVR prostheses and aortic root anatomy determine their mechanical relationships, which might

damage the conduction bundle. At present, it is believed that the continuous compression of surrounding tissues by

Self-Expandable Valves (SEV) after implantation is one of the main mechanisms of delayed pacemaker implantation.

Exploring the mechanical sequelae of implantation might provide a basis for future predictions. This article

summarizes and discusses current literature regarding the mechanical sequelae of TAVR.
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INTRODUCTION

Permanent Pacemaker Implantation (PPMI) is often required 
after Transcatheter Aortic Valve Replacement (TAVR) due to 
complications [1,2]. Permanent left bundle branch block 
developed in approximately 22.7% of patients undergoing TAVR 
and 5.9%-32.0% of them require PPMI [3]. Pacemaker 
implantation not only increases the economic burden of patients 
and the length of hospital stays but might also increase mortality 
rates [4].

The need for delayed PPMI after TAVR has recently increased, 
which might be attributed to early discharge and post-discharge 
surveillance [5]. The complications of TAVR can result in 
syncope and occur outside the hospital, which could be fatal for 
elderly patients. However, predicting the need for delayed PPMI 
is challenging, and associated risk factors are unknown. Current 
literature suggests that persistent compression of surrounding 
tissues by Self-Expandable Valves (SEVs) might be a key factor 
driving the need for PPMI.

LITERATURE REVIEW

The main mechanism of conduction bundle injury after TAVR 
may be related to the anatomical proximity of the atrioventricular 
conduction system to the structures under the aortic valve. Pressure

damage to the conduction system after valve implantation can 
cause tissue inflammation, edema, or ischemia [6]. It is a key 
complication of TAVR that requires management with PPMI. 
Therefore, investigating the mechanisms associated with 
mechanical pressure is crucial.

Direct measurement of stress around valve implants is 
challenging. Research has chiefly focused on the anatomical 
evaluation of the aortic root through imaging, physical 
characteristics of the valve stent, and preoperative prediction of 
the pressure exerted by the stent on the aortic root and left 
ventricular outflow tract through Finite Element Analysis (FEA). 
FEA is a modern mathematical and computer modeling method 
widely used in the development of medical devices. It enables an 
in-depth analysis of the interaction forces between tissues and 
implants [7,8]. Two TAVR modeling methods are currently 
based on FEA. One is universal and based on the average aortic 
root geometry of numerous patients or on simplified aortic root 
geometry with a complex structure [9,10]. The second involves 
three-dimensional reconstruction of an aortic root model of a 
single patient using Computed Tomography (CT) or Magnetic 
Resonance Imaging (MRI). In this method, the anatomical 
model, obtained using MRI or CT, combined with the 
characteristics of the memory-metal used in the prosthesis, can 
simulate and predict the TAVR procedure through computer 
simulation [11].
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for technical expertise, which is associated with increased labor, 
time, and economic costs.

We had previously found that the ratio of the postprocedural 
aortic valve area to preprocedural area (AVA ratio) and ratio of 
the postprocedural Aortic Valve Area to Prosthetic Nominal 
Area (AVA-PNA ratio) are related to the risk of pacemaker 
implantation and potentially to its timing [20]. The post- to 
preprocedural AVA ratio reflects the extent to which tissues are 
squeezed between the prosthetic valve holder and the aortic wall 
after prosthesis is implanted. A higher ratio indicates that the 
prosthetic valve holder squeezes more and increases pressure on 
the aortic wall and left ventricular outflow tract. The AVA-PNA 
ratio is an estimate of the relative expansion of the prosthetic 
valve holder, with a smaller AVA-PNA ratio indicating greater 
compression of the surrounding tissues by the prosthesis.

We previously used both AVA and AVA-PNA ratios to evaluate 
mechanical stress induced by prostheses. The AVA ratio 
estimates the expansion of aortic valve tissue due to the 
prosthesis, whereas the AVA-PNA ratio reflects deformation of 
the prosthesis under compression. These parameters enable 
simple and cost-effective evaluation of forces, but cannot 
accurately evaluate force magnitude or distribution.

We subsequently used postoperative fluoroscopic SEV images to 
measure and calculate compression ratios at different sites of the 
valve frame (unpublished findings). We compared the SEV 
compression ratios at the same location relative to the annulus. 
The results revealed significant differences in sites near the 
annular plane and supravalvular structures between patients 
requiring PPMI or not, and that higher rates of compression 
were associated with PPMI. The compression ratio is also 
associated with the timing of PPMI. This method can more 
appropriately quantify compression ratios at different sites 
corresponding to the force magnitude. It can also indicate force 
distribution more accurately when combined with images from 
different projection angles and thus has potential clinical value.

Information provided by fluoroscopic images of the valve frame 
is not limited to the compression ratio. The overall shape of the 
valve frame and diamond lattice, as well as subtle deformations 
of the metal wire reflect force magnitude and direction. This 
information is not easy to acquire solely by manual means. The 
application of artificial intelligence to the medical field has 
rapidly developed, mostly due to its ability to recognize and 
analyze images. Artificial intelligence might help to analyze the 
shape of an implanted valve frame, provide complete 
information regarding its forces, and enable quantitative analyses 
of its association with conduction bundle damage and 
subsequent PPMI.

CONCLUSION
An accurate analysis of forces induced by a prosthesis and 
patient susceptibility factors, such as right bundle branch block, 
might help in more precise prediction of the likelihood of 
delayed PPMI. Mechanical damage is the main complication of 
TAVR that leads to a need for PPMI. Measuring and analyzing 
the mechanical sequelae of TAVR can enhance understanding of
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Finite element analysis has revealed uneven distribution of forces 
on tissues surrounding implanted valves and that this depends 
on the anatomical characteristics of the aortic root and size and 
shape of the SEVs [12]. Analysis of the forces exerted by the valve 
frame in 12 patients showed that the median combined force of 
the valve frame under squeezing flow was 74.9 N. Furthermore, 
the force (average, 9.9 N) was usually the greatest on the lowest 
part of the valve frame [13]. That study also showed that the 
pressure distribution and shape of the valve holder after 
implantation of bicuspid aortic valves were different from those 
after implantation of tricuspid aortic valves, with the site of the 
maximum force being higher. This could explain why the 
probability of undergoing PPMI after TAVR is lower among 
patients implanted with bicuspid valves than those with tricuspid 
valves [14].

Prostheses are often larger than the aortic annulus of patients to 
ensure prosthetic valves are riveted and the occurrence of 
perivalvular leakage is reduced in clinical practice. Therefore, the 
valve frame often does not expand to its original size after TAVR 
[15]. A study in vitro has confirmed that the radial expansion of 
prosthetic valves is approximately related linearly to the amount 
of compression [16].

The distribution of forces on surrounding tissues after SEV 
implantation is uneven [12]. Compression of the interventricular 
septum between the right coronary sinus and the non-coronary 
sinus, where the left bundle branch or His bundle is located, is 
most likely to cause conduction bundle damage [17]. The 
interventricular septum is often considered a vulnerable area, 
and FEA findings have shown that increased pressure on this 
vulnerable area significantly increases the probability that a 
patient will require future pacemaker implantation [18,19].

DISCUSSION
The complications of TAVR that drive the need for PPMI chiefly 
involve pressure-related damage to the conduction bundle. 
Furthermore, continuous compression of the surrounding 
tissues by SEVs were thought to be one of the reasons for 
delayed PPMI. Studying the magnitude and distribution of these 
forces can provide a deeper understanding of the causes of tissue 
damage and help to develop suitable countermeasures, including 
valve design and implantation strategies.

The main modality of research in this field is FEA simulation. It 
is non-invasive and can preoperatively predict complications of 
TAVR. However, the simulation parameters of FEA include only 
the anatomical morphology of the aortic root, calcification, and 
memory-metal properties, and it cannot effectively evaluate valve 
thickening, adhesion, and fusion. The actual depth of valve 
implantation during TAVR and the degree and effect of balloon 
dilation before and after valve implantation are also difficult to 
predict. Therefore, the accuracy of FEA in predicting the shape 
of the valve frame is limited, which further affects its accuracy in 
predicting force distribution. The prediction of delayed PPMI 
through FEA may requires a more accurate mechanical analysis, 
which may partially explain the paucity of reports regarding this 
aspect. The limited use of FEA might be attributed to the need
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the relationships between prosthetic implants and human 
tissues, help predict the occurrence of associated complications, 
and provide a basis for future problem-solving.
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