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Abstract
Measles virus (MV) is a member of the paramyxovirus family of enveloped RNA viruses and one of the most 

infectious viral pathogens identified. Despite initial optimism that vaccination programs would eventually eradicate 
measles, reduced vaccination coverage against measles continues to result in outbreaks of measles. Mild or 
asymptomatic measles infections are common among measles-immune persons exposed to measles cases and 
may be the most common manifestation of measles during outbreaks in highly immune populations. Persistent, 
asymptomatic MV infections commonly persist in apparently healthy individuals. MV has been detected in several 
malignancies, including lung, breast, and endometrial cancers, as well as Hodgkin’s lymphoma. The presence of 
MV in these tumors was associated with distinct clinico-pathological characteristics: in lung cancer, older ages of 
patients and over expression of Pirh2, and in breast cancer, age less than 50 years, lower histological grade, and 
over expression of p53. Nectin-4 is the MV receptor in epithelial cells and is highly expressed in certain epithelial 
tumors. MV-associated tumorigenesis may be linked to the effect of MV-phosphoprotein on Pirh2, an E3 ubiquitin 
ligase of p53. By way of MV interaction with Nectin-4 and Pirh2, persistent MV infection may co-act with other factors 
in transforming cells to become malignant. 
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Introduction
Although viruses have long been implicated as a cause of cancer 

[1], their relevance to human cancer development has often been 
debated. An estimated 15 percent of all human cancers worldwide 
may be attributed to viruses [2], representing a significant portion 
of the global cancer burden. Both DNA and RNA viruses have been 
shown to be capable of causing cancer in humans. Epstein-Barr virus 
(EBV), human papilloma virus (HPV), hepatitis B virus (HBV), [3] 
human herpes virus-8 (HHV8) [4], and the recently identified Merkel 
cell Polyomavirus (MCPyV) [5] are DNA viruses that are capable of 
causing the development of human cancers. Human T lymphotrophic 
virus type 1 and hepatitis C viruses (HTLV1, HCV) [6,7] are the two 
RNA viruses that contribute to human cancers. It has been recognized 
that tumor-viruses induce oncogenesis by initiating a series of cellular 
events, which lead to immortalization and proliferation of the infected 
cells by disrupting the mitotic checkpoint upon infection of the host 
cell. This is often accomplished by functional inhibition or proteasomal 
degradation of many tumor suppressor proteins by virally encoded 
gene products. Although it is convenient to consider human tumor 
viruses as a uniform group of viruses, these viruses, in fact, have very 
different genomes, life cycles, and represent a number of virus families 
[8]. The path from viral infection to tumorigenesis may be slow and 
inefficient; only a minority of infected individuals progress to cancer, 
usually years or even decades after primary infection. Virus infection 
also is generally not sufficient for cancer, and additional events and host 
factors, such as genetic predisposition, immunosuppression, somatic 
mutations, and exposure to carcinogens also play key roles.

The criteria most often used in determining the causality of viruses 
in the development of cancer are mainly consistency of the association, 
either epidemiologic or on the molecular level, and oncogenicity of 
the agent in animal models or cell cultures [9]. It must be recognized 
however, that the use of these generally applied criteria in deciding 
on causality is selective, and the criteria may be weighted differently. 
Whereas for most of the tumor viruses the viral genome persists in an 
integrated or episomal form with a subset of viral genes expressed in 

the tumor cells, HCV is not inherently oncogenic, but infection leads 
to transformation of cells by indirect means. For some malignancies 
such as Burkitt’s lymphoma, EBV appears to serve as a cofactor. For 
Hodgkin’s lymphoma, the viral association with EBV is inconsistent. 
EBV may simply define subsets of Hodgkin’s lymphoma, or while not 
causing the tumor, may act to modify the phenotype, contributing to 
tumor progression.

There are several lines of reasoning that associate measles virus 
(MV) with cancer development. MV is a ubiquitous RNA virus with
highly contagious properties in unvaccinated populations and results
in lifetime immunity after infection [10]. Despite the wide availability
of a safe and effective live attenuated virus vaccine, measles continues
to be an important cause of morbidity and mortality in many parts of
the world [11-13]. During outbreaks in highly immune populations,
mild or asymptomatic measles infections are common among measles-
immune persons exposed to measles cases, and may be the most
common manifestation of measles [14]. Asymptomatic MV infections
that may be caused by MV mutants commonly persist in apparently
healthy individuals [15,16]. Novel data shows that PVRL4 (Nectin-4),
is the MV receptor in epithelial cells, and is highly-expressed in certain
tumors [17,18]. It was also found that MV may hijack the p53 tumor
suppression system by affecting Pirh2, an E3 ubiquitin ligase of p53
[19]. This review summarizes the data supporting a role played by
MV in the development of several types of cancers. It is suggested
that persistent MV infection may co-act with other factors in the
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malignant transformation of cells. Alternatively, MV may contribute 
to tumorigenesis by modifying the phenotype of an established tumor 
or by playing a key role in tumor progression rather than in tumor 
initiation.  

The Measles Virus
Measles is a common infection in children, caused by MV, a 

non-segmented, single stranded; negative-sense enveloped RNA 
virus of the genus Morbillivirus within the family Paramyxoviridae 
[10]. It is spread by the respiratory route, and characterized by fever, 
photophobia, coughing, running nose, nausea, and a macular red rash. 
MV infection can confer lifelong immunity, and there is no evidence 
of latent or common persistent infection except for subacute sclerosing 
panencephalitis (SSPE). No animal reservoir has been identified.

MV has helical symmetry and encodes 8 proteins. Viral mRNAs are 
transcribed to encode a nucleocapsid protein (NP), a phosphoprotein 
(P), virulence factors (C and V), matrix protein (M), membrane fusion 
protein (F), the hemagglutinin/receptor binding protein (H), and an 
RNA polymerase (L) [20]. Surrounding the nucleocapsid is a membrane 
which contains the two viral glycoproteins, H and F. The H protein is 
required for viral attachment to the host cell receptor. The F protein 
mediates membrane fusion and the entry of molecules throught the host 
plasma membrane and is also responsible for syncytia (multi-nucleated 
cell) formation [21]. Interaction of the H protein of MV with a cellular 
attachment factor is the initial event of infection [22]. The binding of 
H to the host cell receptor triggers and activates the F protein to induce 
fusion between virus and host cell membranes [23]. The nucleoprotein 
(N) forms a helical nucleocapsid around the genomic RNA to form the 
ribonucleocapsid. The phosphoprotein (P) and large (L) polymerase 
protein are associated with the ribonucleocapsid and necessary for 
RNA synthesis after initiation of infection. The matrix (M) protein 
associates with the interior surface of the viral lipid envelope and links 
the ribonucleoprotein complex to the envelope glycoproteins during 
virus assembly. Two nonstructural proteins, C and V, are encoded 
within the P gene through an alternative translation initiation site and 
RNA editing. Neither C nor V is necessary for MV replication in tissue 
culture, but both proteins, along with P, interact with cellular proteins 
and regulate the response to infection.

The first protein identified as a cellular receptor for MV was 
membrane cofactor protein (CD46), which is ubiquitously expressed 
on human nucleated cells [24]. However, although CD46 functions 
as a receptor for laboratory-adapted and vaccine strains of MV, most 
wild-type MV strains do not bind to CD46. More than a decade 
ago, signaling lymphocyte activation molecule (SLAM, CD150) was 
identified as a receptor for both laboratory-adapted and wild-type 
strains of MV [25,26]. CD150 is expressed on subsets of thymocytes, 
macrophages, and dendritic cells, as well as B- and T-lymphocytes. 
Epithelial cells are critical to the process of infection and the spread 
of MV by aerosol droplets. Recently, the human PVRL4 (Nectin-4), a 
tumor cell marker found on breast, lung, and ovarian carcinoma cell 
lines, was identified as epithelial receptor for MV [17,18]. PVRL4 is 
expressed at low to moderate levels in normal tissues but is highly up-
regulated on the surfaces of adenocarcinoma cells. Further experiments 
with differentiated primary epithelial cells in culture and the use of 
human epithelial explants are currently underway to validate the 
role of PVRL4 in infections of normal epithelial cells and establish its 
importance in measles pathogenesis.

MV Infection in Vaccinated Populations
Measles is a leading cause of vaccine-preventable childhood mortality 

worldwide. Even in countries where vaccination has significantly 
reduced mortality, rates may remain high. Despite optimism that 
vaccination programs would eventually eradicate measles, reduced 
vaccination coverage against measles resulted in outbreaks of measles 
in many western countries. In the US, two major types of outbreaks 
have been described: those in which most of the cases occurred among 
preschool-age children (those under 5 years of age), and those in which 
most of the cases occurred among school-age persons (those 5 to 19 
years of age) [27]. Most outbreaks occurred within small clusters, were 
acquired outside of the United States, and involved individuals who had 
not been vaccinated [28]. Although indigenous measles was declared 
to have been eliminated in North, Central, and South America, rural 
Canada is still regarded as having minor endemic status [29]. In many 
European countries, measles outbreaks continue to produce a major 
health problem. The European measles cases have largely (73%) been 
in individuals who have not received the vaccine [30]. Although the 
peak incidence is in the age range of 1-4 years, the vast majority of 
cases occurred in individuals over the age of 4 years. In Israel, despite 
the implementation of a pulse vaccination policy, outbreaks of measles 
continue to occur [31]. A recent outbreak that included hundreds of 
cases has been reported among Jewish ultra-orthodox communities in 
Jerusalem [13]. As a result of measles infection, immunity against MV 
was thought to be life-long. The measles vaccination was also considered 
to induce life-long immunity. It has been recognized, however, that 
the MV can infect previously immune individuals, producing a wide 
range of illnesses such as typical measles, mild modified measles, and 
asymptomatic infection. Helfand et al. [14] studied the frequency of 
mild or asymptomatic measles infections among 44 persons exposed 
to a student with measles during a 3-day bus trip. All participants 
had detectable measles-neutralizing antibodies, and none developed 
classic measles symptoms. Ten of the exposed (23%) were IgM positive 
for measles, indicating recent infection. The authors concluded that 
mild or asymptomatic measles infections are probably very common 
among measles-immune persons exposed to measles cases and may 
be the most common manifestation of measles during outbreaks in 
highly immune populations. Molecular epidemiological investigation 
of measles outbreaks can document the interruption of endemic 
measles transmission and is useful for establishing and clarifying 
epidemiological links between cases in geographically distinct clusters. 
Although measles virus (MV) is serologically monotypic, the genetic 
characterization of wild-type viruses has identified eight classes (A-H), 
which have been divided into 22 accepted genotypes and one proposed 
genotype [32]. There are no known biological differences between 
viruses of different genotypes, and specific measles genotypes are 
not associated with differences in severity of disease, or likelihood of 
developing sub acute sclerosing panencephalitis (SSPE). 

At least three studies have shown the presence of MV infection in 
tissues of asymptomatic individuals. Sonoda et al. [33] detected MV 
genome by RT-PCR in peripheral blood mononuclear cells in 40 of 159 
samples from healthy volunteers who had been immunized more than 
2 months before, and in seven of 26 individuals after natural infection. 
Similar findings were found in bone marrow aspirates performed 
for evaluation of malignant involvement in 179 adult patients with 
a variety of hematological neoplasms [16]. The MV genomes were 
detected in 17 (9±5%) of 179 individuals by RT–PCR of the bone 
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marrow aspirates and 28 (15±6%) through hybridization, and were all 
in the same cluster, D5, the viral strain circulating during the study 
period. The authors concluded that asymptomatic infections of MV 
are common in adults and the presence of the MV genome is not be 
related to the pathogenesis of illness. These results contrast to the MV 
genome detected in chronic brain infection which is related to the 
wild-type virus circulating at the time of initial infection, and not to the 
type circulating at the time of onset of symptoms [34,35]. Katayama et 
al. [15] detected MV mRNA by RT-PCR in 23 (45.1%) of 51 autopsy 
subjects. MV genome was found in the brain, kidney, spleen, liver, and 
lung with the detection rates in each tissue ranging from 8 to 20%. 
Sequence analysis revealed frequent mutations in the corresponding 
viral protein. The authors concluded that MV mutants commonly 
persist in apparently healthy individuals. 

MV in Cancer 
Despite the controversy in regard to the presence of MV in 

Hodgkin’s lymphoma (HL), the presence of MV in various cancers and 
its association with distinct clinicopathologic characteristics remain 
the most convincing evidence associating MV with cancer. In western 
countries, classic HL generally shows a bimodal, age-specific incidence 
curve [36], with the first peak in young-adults linked to high social 
class, a high level of maternal education, small family size, and early 
birth order [37]. It has been proposed that such factors diminish an 
individual’s exposure to infectious agents in early childhood and thereby 
increase susceptibility to developing a virus-induced pathogenesis later 
in life-the so-called late host response model. Since less than 25% of 
young adult cases are Epstein-Barr virus (EBV)-associated, EBV is not 
the elusive agent implicated in this model [38,39]. In recent years, there 
has been a persistent increase in the incidence rate of HL in young 
adults in Israel, and annual rates of incidence, especially in female 
young-adults have surpassed that of any other western country [40]. 

Benharroch et al. [41] reported the presence of MV in Hodgkin’s 
Reed-Sternberg (HRS) cells in classical HL in Israeli patients. MV 
proteins were detectable by immunohistochemistry (IHC) in 82 
(54.3%) of 154 patients using at least two antibodies. MV RNA was also 
detected by RT-PCR and in-situ hybridization in a significant minority 
of the cases. Subsequently two studies failed to confirm the presence 
of MV in HRS cells. MV was not detected in a series of HL cases from 
Scotland and Newcastle [42], nor was MV detected in microdissected 
HRS cells from biopsies of 18 German and 17 Israeli HL cases [43]; 
the Israeli cases had previously scored positive for MV antigens. As 
HRS cells are typically scarce among inflammatory background, it 
remains uncertain whether issues related to methodology or to study 
populations (or both) are responsible for these discrepancies.

MV was subsequently studied in other solid cancers including 
lung, endometrial, and breast cancer. Sixty-five newly-diagnosed 
patients with non–small cell lung cancer of all stages were studied for 
the presence of MV antigens on IHC [44]. Expression of at least one 
MV antigen was found in 54 of 65 (83%) cases. MV was associated 
with older age of patients, improved survival and overexpression of 
Pirh2. Thirty-six patients with endometrial carcinoma were studied 
to detect fingerprints of MV [45]. Twenty-six (72%) cases showed 
the presence of MV antigens in the tumor cells. Sixteen of 21 (76%) 
cases were positive for MV RNA by in-situ hybridization, and type I 
tumor was more positive for viral particles than type II. In 131 patients 
with invasive breast cancer IHC was used to evaluate the presence of 
two MV antigens, hemagglutinin and nucleoprotein [46]. Both MV 

antigens were detected in 64% of the tumors. MV was associated with 
younger age of patients, lower histological grade and overexpression of 
p53, but not with hormone receptor status or Her2/neu. All biopsies 
containing a ductal carcinoma in-situ (DCIS) component showed MV 
in both the DCIS and the invasive breast cancer components. MV 
antigens were studied in several other tumors including malignant 
melanoma, malignant pleural mesothelioma, glioblastoma multiforme, 
and peripheral T-cell lymphoma. MV antigens were detected in 80% of 
malignant melanoma cases but in none of the other three tumor types 
(unpublished data).

Pirh2 may link MV to cancer
The tumor suppressor p53, known as ‘‘the guardian of the 

genome’’, plays a key role in eliciting cellular responses to many signals 
of cell stress. By promoting cell cycle arrest, apoptosis, senescence and 
DNA repair, p53 helps in preventing cancer development [47]. p53 is 
subjected to a variety of post-translational modifications, including 
phosphorylation, acetylation, methylation and ubiquitylation [48]. 
Pirh2, also known as ring finger and CHY zinc finger domain-
containing 1 (Rchy1), is a member of the RING finger family of E3 
ubiquitin ligases. Pirh2 facilitates p53 degradation via the ubiquitin-
proteasome pathway, independent of MDM2 [49]. Notably, Pirh2 
degrades active p53 under conditions of DNA damage when Mdm2 
dissociates from and fails to degrade p53 [50], and p73, another 
member of the p53 system [51]. Pirh2 is highly expressed in multiple 
cancers and in cell lines regardless of p53 status [52]. A mechanism 
by which MV may control the p53 signaling system was described 
by Chen et al. [19], analogous to the mechanism by which oncogenic 
viruses commonly deregulate cellular homeostasis by hijacking the p53 
system, promoting an aberrant cell-proliferation or blocking apoptosis 
[53-56]. MV-phosphoprotein was able to specifically interact with and 
stabilize the ubiquitin E3 ligase hPirh2 by preventing its ubiquitination, 
but had no effect on the stability or ubiquitination of an alternative 
ubiquitin E3 ligase, Mdm2. This mechanism may link persistent MV 
infection, altered p53 function and cancer [19].

A suggested model linking MV with cancer
Despite the wide implementation of measles vaccine programs, 

reduced vaccination coverage against measles continues to result in 
outbreaks of measles in many western countries. Although the exact 
scale of mild or asymptomatic measles infection during outbreaks of 
measles is unknown, these modes of MV infection cannot be ignored, 
and persistent MV infection in otherwise asymptomatic individuals is 
apparently not a rare phenomenon. MV is probably not oncogenic in 
the generally-applied criteria causality, as only a minority of infected 
individuals progress to cancer, usually years or even decades after MV 
infection. The mechanism by which MV-phosphoprotein modifies 
p53, via its effect on Pirh2, may explain how persistent MV may 
support tumorigenesis. Also MV infection is probably not sufficient 
for cancer, and additional events and host factors, such as genetic 
predisposition, immunosuppression, somatic mutations, and exposure 
to carcinogens are probably essential cofactors with MV to produce 
cancer. In cases of Hodgkin’s lymphoma, MV may act in concert with 
EBV in the lymphomatous transformation of cells. Cigarette smoke 
may act along with MV in the course of development of lung cancer 
among smokers, and MV maybe a cofactor with a UV light-induced, 
B-RAF mutation that results in invasive melanoma. Recently, the MV-
receptor, PVRL4 was shown to be overexpressed in several epithelial 
tumors. Although the presence of MV in cancer might simply indicate 
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MV infection of already transformed cells, data showing that MV-
infected tumors show clinicopathological characteristics distinct from 
uninfected tumors support the hypothesis that MV plays a role in early 
stages of tumorigenesis. Figure 1 summarizes the suggested MV model 
of tumorigenesis. 

Conclusions and Future Directions
Confirmation of the proposed model requires confirmation of 

the presence of MV in tumors in additional populations, as well as 
development of an animal model which could also be used to study 
the long-term sequelae of persistent MV infection. Future studies 
will need to address questions that may be raised by the suggested 
model such as: (i) the exact magnitude of persistent MV infection in 
previously-vaccinated populations; (ii) defining populations that are 
most susceptible to develop persistent MV; (iii) pursuing interactions 
between MV and additional events or factors in transforming cells 
to become malignant; and (iv) clarifying whether additional MV 
mechanisms to the effect of MV-phosphoprotein on Pirh2 are involved 
in MV-induced tumorigenesis. We suggest that the data presented in 
the current review justify the initiation of additional laboratory and 
epidemiologic studies that may further substantiate the association 
between MV and cancer.  
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Figure 1: Diagram showing the suggested measles virus model of tumorigenesis.
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