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Introduction 
Most open-channel flows of interest in the physical, hydrological, 

biological, engineering and social sciences are unsteady and can be 
considered to be one-dimensional (1-D). In unsteady flow, some 
aspects of the flow (velocity, depth, pressure, or another characteristic) 
is changing with time. In 1-D flow, longitudinal acceleration is 
significant, whereas transverse and vertical accelerations are negligible. 
Many interesting problems involving 1-D nonstationary flows have 
been approximated by assumption of steady flows (for example, 
constant peak discharges in flood plain delineation studies) or 
piecewise steady flows, where in storage outflow relations are derived 
for channel reaches from a steady flow hydraulic model and used in 
simple hydrologic routing methods. Piecewise steady flow analysis 
typically does not consider all the forces acting on the flow and 
only partially accounts for channel storage effects. The approximate 
solutions for steady flow and piecewise steady flow analysis are 
adequate for certain simplified planning or design problems but are 
inadequate for many others (for example, streams with rapidly rising 
and falling stage, flat slopes, and broad flood plains where storage and 
acceleration effects could be substantial). No criteria are available to 
guide researchers especially, when steady flow methods are acceptable 
and when a complete unsteady flow analysis is necessary. Further, 
problems such as tidally affected flows and sudden releases from power 
generation stations require 1-D unsteady flow analysis. In general only 
nonuniform unsteady flow is of interest in hydraulic analysis.

Three conservation principles: conservation of water mass, 
conservation of the mechanical energy content of the water and 
conservation of the momentum content of the water are available for 
analysis of 1-D unsteady flow. Conservation of thermal energy is not 
considered because temperature change and heat transfer effects do 
not affect flow depth and discharge. In some works [1-5] researchers 
provide a detailed list of differences between the energy and momentum 
approaches and argue for combined application of the conservation 

of mass and conservation of momentum principles as the equations 
of motion because this combination gives the correct wave speed and 
height should abrupt waves (hydraulic bores) form during the modeling 
of rapidly increasing or decreasing flow. In contrast, application of the 
conservation of energy principle provides no simple approximation 
that can be applied to yield the correct wave speed and height.  The 
applicability of the conservation of momentum principle to the solution 
of lateral inflow problems has been demonstrated in modeling of side 
channel spillways and wash water troughs (for example, [6]), both of 
which cause much greater turbulence than normally results in unsteady 
flow. In order to take care of this problem we can follow different 
approaches: for instance in [7] the authors give further evidence for the 
choice of the momentum conservation principle. Further, because the 
use of Manning’s equation for resistance losses yields a better estimate 
of the resistance coefficient for the momentum principle than for the 
energy principle, methods based on momentum conservation yield 
better estimates of the water surface profile than do methods based on 
energy conservation, especially if Manning’s number n1 is calibrated 
to measured water-surface profiles or historic high water marks. In 
addition, the resistance coefficient estimated from the momentum 
principle was insensitive to variations in the velocity of lateral inflow 
(many applications of unsteady flow involve a wide range of lateral 
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inflow rates). Finally, the equation obtained with the conservation of 
momentum principle is simpler than the equation obtained with the 
conservation of energy principle.

In the analysis of unsteady flow in open channels, using suitable 
assumptions [8], formal statements of the conservation of water volume 
(mass) and conservation of water momentum can be developed. No 
forces of any kind are considered in the conservation of mass. Forces, 
momentum fluxes and the momentum of water in storage are related in 
the conservation of momentum principle. If all the factors are included 
in the analysis, the equations are referred to as the complete Saint-
Venant or shallow water equations with source terms.

The 1-D complete Saint-Venant equations with source terms 
solved by analytical method is too complex that’s why in this note, 
we apply a numerical scheme known as Lax-Wendroff method. This 
algorithm is «super-convergent» when applied to some test examples 
to detect possible deterioration of accuracy due to strong oscillations 
in the parameters that determine the stencil [9-12]. So this scheme is 
compared to many numerical methods of high order of accuracy, such 
as, the linear Central Weighed Essential Non-Oscillatory (CWENO) 
scheme which is superior to full nonlinear CWENO method [13-15], 
to high-resolution TVD conservative schemes along with high order 
Central Schemes for hyperbolic systems of conservative Laws [9,16] 
and to Central-upwind schemes for the shallow water system [17]. 
In a search for stable and more accurate shock capturing numerical 
approach, the authors [16,18,19] have compared some numerical 
schemes, namely, Leapfrog, Lax-Wendroff, Lax-Friedrichs, and so on, 
for shallow water equations without source terms. Their results have 
shown that the Lax-Wendroff is an explicit second order method, is 
more efficient and effective than the others and the stability restriction 
of this scheme is given by the famous Courant-Friedrichs-Lewy (CFL) 
condition. Furthermore, Lax-Wendroff’s approach is one of the most 
frequently encountered in the literature related to classical Shock-
capturing schemes. However, difficulties have been reported when 
trying to include source terms in the discretization and to keep the 
second order accuracy at the same time. For more detail we refer the 
readers to [14,18]. In this report the attention is focused on the complete 
Saint-Venant equations with source terms and, more specifically, we 
are interested in the following four items.

1.	 Mathematical modeling of 1-D complete shallow water 
equations with source terms;

2.	 Complete description of the Lax-Wendroff method for these 
complex nonlinear PDEs;

3.	 Stability requirement of this algorithm: this item together 
with item 2 are our original contributions and they represent a 
generalization of [16,18], where r considered as the lateral inflow per 
unit length along the channel (the so-called source term) is assumed to 
be identically equal to zero;

4.	 A wide set of numerical evidences concerning the 
simulations of the Lax-Wendroff approach for 1-D complete shallow 
water equations with source terms, and regarding the effectiveness of 
this scheme according to the theoretical indications given in the first 
three items.

In particular, we consider the case where the channel is prismatic 
and the interesting result is that the algorithm seems to be second 
order accuracy while the stability limitation is not the same as  the 
CFL condition widely studied in the literature for hyperbolic partial 
differential equations (for example: linear advection equation, wave 

equation, inviscid burgers equations, etc.,). However, while the 
stability requirement is highly unusual, the result has a potential 
positive implication since the stability restriction obtained in this work 
controls the famous CFL condition. Indeed the nice feature is that, as 
required in a stability context, we normally find the stability condition 
from a Fourier stability analysis. On the other hand, it follows from 
this analysis that an instability occurs when ∆t is greater than some | 
Δt |max which can be viewed as (Δt)CFL. We proceed as follows. Section 
2 deals with the mathematical model of 1-D complete shallow water 
equations with source terms. The Lax-Wendroff scheme for Saint-
Venant equations with source terms is  completely described in section 
3. In Section 4, we study the stability condition of the method. Some 
numerical experiments are considered and critically discussed in 
section 5. We draw the general conclusion and present the future works 
in section 6.

Mathematical modeling of 1D complete shallow water 
equations with source terms

In this section we give some useful definitions along with important 
tools which are crucial in describing the 1-D complete shallow water 
equations with source terms. First, we recall that in time dependent 
flow analysis, two governing algebraic equations must be explicitly 
solved because the flow and the elevation of the water surface are both 
unknown. One of the governing equations is the conservation of water 
volume and the other one is the conservation of water momentum. 
Moreover, a computational element with respect to time also must be 
considered: the time axis is divided into finite increments that, ideally, 
will be short enough so that the algebraic approximations of the 
differential and integral terms will be sufficiently accurate. However, a 
starting time for the computations when all the flow values are known 
at the computational nodes (ends of the computational elements) must 
be established.

Definition 4.1. The top width T[x,y(x,t)] is defined as the horizontal 
distance across the cross section at a given height in the plane (possibly 
curved) of the cross section. Furthermore, it is obvious that T[x,y(x,t)] 
is a function of the distance along the channel x and the height Y if the 
water in the channel. The water surface is assumed to be horizontal as 
required for 1-D open channel flow.

Definition 4.2. The area of flow in the cross section A[x,y(x,t)] is 
the integral of the top width function. More specifically is A[x,y(x,t)] 
given by 

( , )

[x, y(x, t)] = ( , )∫
y x t

o

A T x z dz                                                                (1)

where z is the height above the thalweg (the locus of the minimum 
elevation points in the main channel is a convenient choice for the 
distance axis). The integrand, T(x,z) varies only with the height z, from 
the minimum point in the cross section because the location along the 
channel x, and the time t, are held constant during the integration.

Definition 4.3. The hydrostatic pressure force on the narrow 
horizontal strip at height z, is approximately ρg[y(X,t)-Z]T(X,Z), where 
g is the acceleration of gravity. Thus, the pressure force Fp, on the cross 
section below y, is given by the integration of the pressure forces on 
many small horizontal strips as 

( , )

0

{ ( , ) } ( , )ρ= −∫
y x t

pF g y x y z T x z dz                                                                 (2)

Definition 4.4. The first moment of area about the water surface  is 
the ratio J[x,y(x,t)] of the pressure force to, ρg that is,
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( , )

0

[ , ( )] { ( , ) } ( , )= −∫
y x t

J x y xt y x y z T x z dz                                                             (3)

Expansion of relation (3) and integration by parts yields
( , )

0

[ , ( )] ( , )= ∫
y x t

J x y xt A X Z dz      

The qualifier that the first moment of area should be about the water 
surface is now dropped, because this is the only axis where moments 
are determined.

Definition 4.5. The wetted perimeter P[x,y(x,t)] is the length of the 
boundary of the cross section that is under water for a given height of 
water y. It can be defined in terms of an integral involving derivatives 
of the boundary shape (the mathematics will not be discussed here 
because the characteristic can be simply described).

Remark 4.1. The wetted perimeter is never less than the top 
width and is often nearly equal to the top width. However, there are 
cross sections for which the difference between top width and wetted 
perimeter is substantial. Therefore, the conveyance which includes the 
wetted perimeter implicitly, is used in FEQ and FEQUTL (Franz and 
Melching, [20]) simulations of a channel.

Definition 4.6. The conveyance is the simplest of the dynamic 
elements, at least if the Manning friction loss relation is applied. A 
compact channel is shaped such that the ratio of the flow area to the 
wetted perimeter (that is, the hydraulic radius) adequately describes 
the effect of channel shape on the friction losses. The conveyance for a 
compact channel is 

2/3

1

1.49( ,  y) ( ,  y) ( ,  y)=K x A x R x
n

 ,                                                                        (4)

where R(x,y) is the hydraulic radius, which equals A(x,y)/P(x,y), 
and n1 is the Manning’s roughness coefficient. If the cross section is 
noncompact, it must be subdivided. The subdivision of compound and 
composite cross sections is discussed in Franz and Melching [20].

Definition 4.7. The effects of nonuniform velocity distributions 
are corrected with momentum and kinetic energy flux coefficients. In 
1-D flow analysis, the average velocity is used to compute the flux of 
momentum and kinetic energy. However, these fluxes involve powers 
of the velocity at each point of the cross section (local velocities) so 
that an error results if the average velocity is used. The square of the 
average velocity does not equal the sums of the squares of the local 
velocities used to define the average. The average velocity is defined so 
that continuity is preserved. That is, the flow rate Q for the cross section 
is defined by

Q ,= ∫
A

vdA                                                                            	                 (5)

where ν is the velocity at each point in the cross section. The average 
velocity is then simply defined as /µ = Q A .

Partial derivatives of the area and the first moment of area are 
needed for some derivations and for an understanding of some of 
the terms in the equations of motion. Among these necessary partial 
derivatives are the rate of change of area with distance at a fixed water 
surface height and the rate of change of the first moment of area with 
respect to the water surface with distance for a fixed water-surface 
height. The notation used should make clear which variable is held 
constant. For example

T [x,y(x,t)]|∂
∂ yx

,                                                                          (6) 

indicates that the height, Y, is held constant and that the time variable 
is suppressed. A shorthand form for this notation is y

xT , where the 
subscript denotes the variable used in taking the derivative and the 
superscript denotes the variable held constant. On the other hand,

T[x, y(x, t)],∂
∂x

                                                                  	              (7)

Indicates that only t is held constant. The height Y can vary so long 
as the time is held constant. 

Lemma 4.1. The derivatives of area and first moment of area with 
respect to the water surface with distance along the channel are given 
by,

A[x, y(x, t)] [x,  y(x,  t)]∂ ∂
= +

∂ ∂
y

x
yT A

x x
                                                    (8)

and

[x, y(x, t)] [x,  y(x,  t)]∂ ∂
= +

∂ ∂
y

x
yJ A J

x x
.                                                   (9)

Proof. The proof is obvious according to the Leibniz rule [21].                                                          

Remark 4.2. The terms y
xA  and J y

x  are not needed if the 
channel is prismatic. The last term in equation (9), J y

x , is related to 
the downstream component of the pressure force on the sides of the 
channel, which is given by the product of ρg and the derivative of the 
first moment of area at constant depth with respect to distance along 
the channel, that is ρ y

xgJ . The effects of the curvature of the cross 
section and the flow in the channel are ignored in these derivatives. 
Addition of the directional effect substantially increases the complexity 
of the analysis. 

Using the previous definitions together with Lemma 4.1, we are 
ready to describe the conservative form of 1-D complete Saint-Venant 
equations with source terms which is basic in our analysis. Various 
forms of the equations are presented. We start with the integral form 
of the equations that plays a crucial role to all forms and, is used as 
a basis for defining numerical approximations to shallow water flows 
applied in the full equation model. Detailed derivations of the unsteady 
flow equations are given in [4] and [22,1]. In [23] the authors present a 
detailed mathematical and philosophical discussion of these equations. 
The integral form of equations also is a macroscopic statement of the 
principles of conservation of mass and momentum for what is called a 
control volume. On the one hand, the conservation of mass principle 
for a control volume is given by

0
0{A(x, t )-A(x, t )}dx = {Q(x , t )+I(t) - Q(x , t)}dt∫ ∫

R f

L

x t

f L Rx t
,     (10)

Where xL, upstream boundary of the control volume; xR 
downstream boundary of the control volume ; t0 initial time; tf one time 
step later than t0, that is, tf > t0. The term I(t) denotes the inflow of water 
that enters the control volume through the sides of the channel and 
thus, is negative if the lateral flow is out of the channel. The left-hand 
side of equation (10) is the change in volume of water contained in the 
control volume during the time interval (t0,tf) while the right-hand side 
of (10) is the net volume of inflow to the control volume (inflow minus 
outflow) during the time interval. Thus, equation (10) indicates that the 
change in volume of the water in the control volume during any time 
interval is equal to the difference between the volume of inflow and 
the volume of outflow during that time interval. On the other hand, 
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the principle of conservation of momentum includes the momentum 
flux and various forces on the boundaries of the control volume. In 
most basic fluid mechanics texts (for example, [24]), the conservation 
of momentum for a control volume in one dimension results in 

· ,ρ ρ µ∂
= ∀ +
∂∑ ∫ ∫x xCV CS

F v d v dA
t

                                                                   (11)

where Fx are the forces acting on the control volume (CV), νx is the 
velocity in the x -direction, ∀d  is the volume differential, µ is the 
velocity vector and dA is the differential area taken as a vector normal 
to the control surface CS of the control volume. The first term on the 
right-hand side of equation (11) is the rate of change in momentum 
stored in the control volume and the second term is the momentum 
flux through the control volume. By moving the momentum stored in 
the control volume to the left-hand side and the sum of forces to the 
right-hand side and expanding the sum of forces, the conservation of 
momentum for the control volume becomes

0
0{Q(x, t  ) - Q(x, t )}dx= { Q (x , t) - Q (x , t)}dtρ ρ β µ β µ∫ ∫

R f

L

x t

f L Rx t
 

+ 
0

{J(x ,t)+ J dx - J(x ,t)}dtρ ∫ ∫
f R

L

t x y
L x Rt x

g

+
0 0

0  dtdx  dtdxρ τ−∫ ∫ ∫ ∫
f R f R

L L

t x t x

t x t x
g S A P

+ 
0

2C (w) U T cos  dtdx,ρ ϕ∫ ∫ f R

L

t x

D at x
                                                   (12)

where S0 is the bottom slope of the channel, τ  is the average shear 
stress on the water from the channel boundary, 2( )ρ 

D aC w U  is the 
wind induced shear stress on the water surface in the direction of the 
windvelocity vector, ρa is the density of air, U  is the wind velocity, 
CD(w) is the dimensionless drag coefficient for wind shear stress, and 
φ is the angle between the downstream flow direction in the channel 
and the velocity of the wind. Although complicated, equation (12) is 
a precise mathematical statement of the conservation of momentum 
principle. The friction force term simplifies if it is assumed that the 
relation between slope and boundary friction from steady uniform 
flow,

0
τ
ρ

=
PS
gA

,                                                                                            (13)

can be generalized to unsteady flow by replacing the bottom slope S0, 
with the friction slope Sf given by relation (15). Applying this definition 
of the friction slope and dividing equation (12) by ρ yields the integral 
form of the conservation of momentum equation for open-channel 
flow. That is,

{ }
0 0

0{Q(x, t  ) - Q(x, t )}dx= Q (x , t) - Q (x , t) dt {J(x ,t)+ J dx - J(x ,t)}dtβ µ β µ +∫ ∫ ∫ ∫
R f f R

L L

x t t x y
f L R L x Rx t t x

g

0 0

2
0A(S  - S ) dtdx ( ) cos  dtdxρ ϕ

ρ
+ +∫ ∫ ∫ ∫ f R f R

L L

t x t x a
f Dt x t x

g g C w U T .                 (14)

In equation (14), the momentum contribution from the lateral 
inflow is ignored. The friction slope must be estimated from the cross-
sectional characteristics and the flow. In terms of the total channel 
conveyance K, the friction slope is computed from

2

| |  . =f
Q QS

K
                                                        		               (15)

The use of the product | | Q Q  instead of 2  Q  as normally seen in 

steady flow analysis gives the result that the friction is a retarding force 
on the water in the control volume for either direction of flow. 

The differential form of equations derived by manipulating the 
integral form or an approximation of it by taking limits as the time 
and distance intervals approach zero. Approximating the integrals in 
equations (10) and (14) by finite differences and taking limits gives the 
following conservative system of time dependent partial differential 
equations

0

,

( ) ( ) ,µ

∂ ∂
+ =

∂ ∂
∂ ∂ ∂

+ + = − +
∂ ∂ ∂

y
f x

A Q r
t x
Q Jg Q gA S S gJ
t x x

                                               (16)

where the wind stress terms are omitted in these developments 
to simplify the equations because these terms are not necessary for 
the general development of the differential equations of motion. In 
addition, the momentum flux correction coefficients β are assumed 
to be 1. Here r is the lateral inflow per unit length along the channel, 
defined as a function of distance and time such that

( ) ( , ) .= ∫
R

L

x

x
I t r x t dx                                                                           (17)

The system of partial differential equations given by relation (16) is 
often called a 1-D complete shallow water problem with source terms. 
All the quantities in system (16) are algebraic expressions and can be 
positive or negative. Therefore, a negative outflow is an inflow. The 
first equation of system (16) is a statement of the conservation of mass 
principle (with ρ cconstant) on a per unit length basis. Similarly, the 
second equation of (16) is a statement of the principle of conservation 
of momentum per unit length. The terms involving derivatives of J on 
the right-hand side of the equal sign represent the net downstream 
pressure force per unit length. The derivative of µQ  then moved to the 
right of the equal sign, represents the net efflux of momentum per unit 
length. Finally, the term gA(S0-Sf) is the net downstream force per unit 
length from gravity and friction forces.

Lemma 4.2.   

The system of partial differential equations (16) is equivalent to the 
following conservative system

,∂ ∂
+ =

∂ ∂
A Q r
t x

                                                                                      (18)

where ( , ) ,= TU A Q  
2

1,
 

= + 
 

T
QF Q gI
A

 and 2 0( , ( ))= + − T
fS r gI gA S S . Equation 

(18) emphasizes the conservative character of the system (16). Here,I1 
represents a hydrostatic pressure force term as described in [23]

{ } ( )
( , )

1 0
( , ) ,η η η= −∫

y x t
I y x t T x d ,                                                                       (19)

in terms of the surface water level Y(x,t) and the breadth

( ) ( ),
,η

η
∂

=
∂

A x t
T x .                                                                                      (20)

I2 accounts for the pressure forces in a volume of constant depth y 
due to longitudinal width variations

{ } ( )( , )

2 0

,
( , ) .

η
η η

∂
= −

∂∫
y x t T x

I y x t d
x

                                                                   (21)

In the particular case of prismatic channels of constant breadth (or 
top width), they reduce to the original equations

∂ ∂
+ =

∂ ∂
U F S
t x

,                                                                                             (22)
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Where 

 
=  
 

A
U

Q
, ( ) 2 2

2

 
 =  + 
 

Q
F U gA Q

T A
 and 

0( )
 

=  − f

r
S

gA S S
.         (23)

Proof. The details of the proof is given in Appendix A.

In the particular case of prismatic channels of constant breadth 
(or top width), they reduce to the originale equations presented by 
St. Venant (for example [25], case where r=0). It is worth noting that 
they keep the nonlinear convective character and, therefore, admit 
discontinuous (weak) solutions [2]. In those cases in which F=F(U), it 
is possible to rewrite the conservative system in the form

∂ ∂
+ =

∂ ∂
U UJ S
t x

,                                                                                         (24)

Where the Jacobian matrix J of the system (24) is given by

2 2

0 1
2µ µ

 ∂
= =  −∂  

FJ
cU

,                                                                              (25)

where /µ = Q A  is the cross section averaged water velocity and 
/=c gA T  is the celerity of the small amplitude surface waves. It is 

analogous to the speed of sound in gases and contains the essence of 
the compressibility associated to the deformability of the free surface. 
At the same time, it is the basis of the definition of the Froude number  
Fr=µ/c dimensionless number governing this kind of flow, which, also 
in analogy to the Mach number, allows for a classification in three flow 
regimes: subcritical (Fr<1) supercritical (Fr>1) and critical (Fr=1).   

The system of equations (24) is a hyperbolic system of partial 
differential equations. Therefore, the Jacobian matrix J presents 
interesting properties closely linked to the physics of the problem 
represented by the mathematical model. The matrix can be made 
diagonal by means of the set of eigenvalues, which are real and represent 
the speed of propagation of the information. At the same time, the 
matrix has a set of linearly independent eigenvectors. The Jacobian’s 
eigenvalues can be obtained from det (J-λI2)=0 and are given by

1,2λ µ= ± c .                                                                                         (26)

They represent the speed of propagation of the perturbations and 
hence are the convective wave velocities. If the Jacobian was a constant 
matrix, the system would be linear and decoupled. Being a variable 
matrix in terms of the dependent variables, the system is nonlinear 
and coupled, and the advection velocities can change of sign and value 
locally.

Lemma 4.3. The characteristic form of the system of equations (16) 
is obtained by transforming [8] the system of time dependent PDEs 
so that derivatives taken in the proper directions, called characteristic 
directions, can be written as ordinary derivatives and not partial 
derivatives. The result of this transformation is

( )0( )µ µ µ∂ ∂ ∂ ∂   + ± + = − − −   ∂ ∂ ∂ ∂   
y

f x
dx y dx y cgA S S A r

t dt x t dt x A
,                   (27)

and 

1,2λ µ= = ±
dx c
dt

                                                                                      (28)

Armed with the above tools, we describe in the subsequent sections the 
Lax-Wendroff scheme and we study in detail the stability of this algorithm.

Lax-Wendroff scheme for full shallow-water equations
In this section, we describe the Lax-Wendroff numerical scheme 

for 1-D complete surface water equations with source terms given 
by (16). This method seems to be the more convenient since it is one 
of finite difference schemes of second order accuracy for hyperbolic 
partial differential equations [26]. The development of this scheme for 
nonlinear PDEs follows from the Taylor series

( ) ( ) ( )2 2

2
, ,

, ,
2!
∆  ∂ ∂ + ∆ = + ∆ + +  ∂ ∂   


x t x t

tG GG x t t G x t t
t t

                            (29)

To approximate solutions of (22)-(23) (see appendix A) we 
discretize in both space and time assuming uniform mesh spacings of 
Δx and Δt, respectively. We denote the spatial grid-points by xj =jΔx 
and the time steps by tn =nΔt

Lemma 5.1. The Lax-Wendroff numerical scheme for 1-D complete 
Saint-Venant equations with source terms (22)-(23) is given by                  

( ) ( ) ( ) ( )
2

1 1,2
1 1 1 12 4

λ+
+ − + −

∆∆
= + ∆ ⋅ − − + −

∆ ∆
nn n n n n n n

j j j j j j jj

ttA A t r Q Q r r
x x

( )
( ) ( ) ( )

4
2 22 3 1 1 1 11

2 7 7
3 3

1 1

1
4 41.49

+ + − −

+ −

 
∆ ∆   + − +   ∆ ∆   

n n n n n
j j j j

n n
j j

Q Q Q Qt gn P t
x xA A

( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 2 2 1 1

1 1
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2 2
2

+ −
+ −

+ −

 
  × − + + − +   

 

n n n
j j jn n n

j j j n n n
j j j

Q Q Qg A A A
T A A A

         (30)

and

( ) ( )
( ) ( ) ( ) ( )

4 2 2
2 3 2 2 1 11 1

1 12 7
1 13 2 21.49

τ
ρ

+ −+
+ −

+ −

   ∆    = + ∆ ⋅ − − − + −     ∆    

n n n n
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j j j j n n
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Q Q Q Qgn PP t gQ Q t A A z
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( )
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.                                              (31)

Proof. The proof of this Lemma is given in Appendix A.                                                                 

Using Lemma 5.1 we are ready to analyze the stability restriction of 
the Lax-Wendroff scheme.

Stability Analysis
This section deals with the stability analysis of the Lax-Wendroff 
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numerical scheme for 1-D complete shallow water equations with 
source terms in the case where the channel is prismatic. First, we present 
a rainfall hydrograph test, based on experimental measurements 
realized thanks to the SATREPS project METHOD in a flume at the 
rain simulation facility at Benoué-Garoua (Cameroon). The flume is 
1150m long with a slope of 4%. The simulation duration is 40s. The 
rainfall intensity I(x,t)is described by

( )
51.18 10

,
0

− ×= 


m
sI x t  [ ]3( , ) 0,10 200,240

;
.

 ∈ × if x t

otherwise
                                             (32)

For this test, as there is no rain on the last 150m, we have a wet/dry 
transition. The measured output is an hydrograph, that is a plot of the 
discharge versus time. The mathematical model for this ideal overland 
flow is the following: we consider a uniform plane catchment whose 
overall length in the direction of flow is L. The surface roughness and 
slope are assumed to be invariant in space and time. We consider a 
constant rainfall excess such that

( ) 0 , 0 ;
,

0 ,
≤ ≤ ≤ ≤

= 


fI if t t t x L
r x t

otherwise
                                                        (33)

where I is the rainfall intensity and tf is the final time of the rainfall 
excess. According to relations (32) and (33) we assume in the following 
that r is more less that A and Q, i.e., ,<<r A Q . Furthermore, Lemma 
4.1 gives the ”temporary” stability limitation of the Lax-Wendroff 
algorithm described in section 3.

Lemma 6.1. The numerical scheme (30) is stable if estimate (34) 
holds.

( )
1 1

4
12 3 2 31

2
11 1
2 1.49

µ µ
 − + 
 

 
∆  ⋅ ⋅ + ∆ ≤ ∆   

b a tgn Pt t e
x

,                                                (34)

with the restriction: 1
2

∆ ≤k x . Here, 1 =a te A , 1 =b te Q  and µ = Q A .

Proof. Regarding the proof of this result we refer the readers in 
Appendix B. 

In way similar, the following result gives the stability restriction of 
the numerical scheme (31).

Lemma 6.2. The numerical scheme (31) is stable if estimate (35) 
holds.

1
1
2 1µ ∆

∆

 ∆  ⋅ + ⋅ ≤ 
∆   

a t x
t

t g e N
x T

,                                                                   (35)

with the requirement: 1
2

∆ ≤k x . Here, 1 =a te A , 1 =b te Q , µ = Q A  
and 
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   

a t a tb t b tgn P gn PP Pe e t e e t

+ 
( )

11
1

241
11 2 3 21 32

2

1
2 1.49

τµ µ
ρ

−
−

     + + ∆ ⋅ ∆            

a ta tb t g P gn Pe e e t x
T

( )
11

1

4
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1.49

τ µ
µ ρ
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.                  (36)

Obviously, 1
1
211 1

µ
∆
∆ > + >

a tx
t

gN e
T

.

Proof. The detail of the proof is given in Appendix B.                                                                   

Now, using the above results (namely, Lemmas 4.1 and 4.2) we are 
ready to give the stability requirement of the Lax-Wendroff scheme 
(30)-(31) and to compare it with what is available in the literature 
(for example, Courant-Friedrich-Lewy condition for linear hyperbolic 
partial differential equations).

Theorem 6.1. The Lax-Wendroff scheme for 1-D complete shallow 
water equations with source terms (16) is stable if

1
1
2 1µ ∆

∆

 ∆  ⋅ + ⋅ ≤ 
∆   

a t x
t

t g e N
x T

,                                                                         (37)

with the requirement: 1
2

∆ ≤k x . In relation (37): 1 =a te A , 

1 =b te Q , µ = Q A  and ∆
∆

x
tN  is given by relation (36).

Proof. The proof follows from both estimates (34) and (35). That is,

( )
1 1

1
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12 3 2 31
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1
2

11 1,
2 1.49

1,

µ µ

µ

 − + 
 

∆
∆

 
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t

gn Pt t e
x

t g e N
x T

                                                      (38)

with the requirement: 1
2

∆ ≤k x . System of estimates (38) is equivalent 
to relation

( )
1 11

1

4
11 2 3 2 312

2 1
2

1max 1 ; 1.
2 1.49

µ
µ µ

µ

 − +  ∆ 
∆

 
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t
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gn Pt g e t e N
x T g e
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In addition, it is obvious to see that estimate (39) holds

( )
1 1

1

4
12 3 2 31

2 1
2

11
2 1.49

µ
µ

µ

 − +  ∆ 
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 + ∆ ⋅ ≤ 
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x
t

a t

gn Pt e N
g e
T

.                                         (39)

Some important remarks on stability analysis

In the subsequent paragraphs we give some useful remarks on the 
stability restrictions obtained in this note and we compare it with what 
is known in the literature, for example, the Courant-Friedrichs-Lewy 
condition.

The stability restriction (37) shows that a small space step Δx 
forces the time step Δt to be more potentially small. This makes the 
Lax-Wendroff scheme extremely slow. For example, let us consider 
a spatial domain [0; 1] with space step  Δx=5.10-2 Then, the required 
time step (Δt)req must be less than the maximum solution (in modulus) 

of equation: 21
1

510220 1µ
−⋅

∆

 
∆ ⋅ + ⋅ =  

 

a t

t
gt e N
T

. More especially, since 

2 1
1

510 211
µ

−⋅
∆ > +

a t

t
gN e
T

, the required time step  (Δt)req  must be less or equal 

than 1 1

1
1 1
2 2120 1µ

µ

−
   

+ +         

a t a tg ge e
T T .

The Lax-Wendroff scheme (30)-(31) for 1-D complete surface 
water equations has stability restrictions (34)-(35) that limit the 
maximum time step. The stability requirement given by estimate (37) 
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does not coincide with the famous Courant-Friedrichs-Lewy (CFL) 
condition obtained for simple hyperbolic partial differential equations 
(for example: linear advection equation, wave equation, burgers 
equations, etc...) because the Lax-Wendroff scheme is applied to a more 
1-D complex unsteady partial differential equations. As discussion on 
the stability restrictions one can refer to the stability analysis of the 
two step Lax-Wendroff method and the MacCormack scheme applied 
to complete burgers equations [26]. However, it is easy to show that 
the greatest eigenvalue (in modulus) λmax of the Jacobian matrix J 
of conservative system (18) is bounded by the positive quantities 

1µ − a tg e
T  and 1µ + a tg e

T
. Thus it is obvious that inequality (40) 

holds

1
1
2

maxλ µ ∆
∆

 ∆ ∆
≤ ⋅ + ⋅  ∆ ∆  

a t x
t

t t g e N
x x T

,                                                    (40)

which means that the stability limitation given by (37) controls the CFL 
condition, and so it is more restrictive. The stability restriction (37) is 
highly unusual. Since we normally find condition (37) from a Fourier 
stability analysis, it follows from estimate (40) that an instability 
occurs when |Δt| is greater than some |Δt|max which can be viewed as 
(Δt)req As observed in proving Lemmas 4.1 and 4.2, it was not easy to 
obtain the stability criterion for the Lax-Wendroff scheme applied to 
1-D complete Saint-Venant equations (16). However, it follows from 
conditions given by relations (36) and (37) that the empirical formula

1µ

∆
∆ ≤

+ a t

x
t

g e
T

,                                                                                   (41)

can be used with an appropriate safety factor. The latter formula (41) 

reduces to the usual inviscid condition max 1λ∆
≤

∆
t
x

 (case where the 

right-hand side of equation (16) is assumed equals zero) when ∆
∆

x
tN  

is set equal to 1. It should be remembered that the ”heuristic” stability 
analysis, i.e., equation (37), can only provide a necessary condition 
for stability. Thus, for some finite difference algorithms, only partial 
information about the complete stability bound is obtained and for 
others (such as algorithms for the heat equation) a more complete 
theory must be employed.

• Once the stability is assumed the Lax-Wendroff scheme is both 
convergent and an explicit one step two time level method.

• Relation (37) illustrates the effect that the choice in both space 
step and time step have on the stability of the Lax-Wendroff scheme.

Numerical Evidences
In this section we simulate the Lax-Wendroff scheme described in 

section 4 for 1-D complete shallow water equations with source terms. 
We focus on a practical application of a shallow water flow based on 
the Benoué river. This river is a 7000m long reach of the upstream part 
(altitude=174.22 m) and it is located in Cameroon. Being a mountain 
river, it is characterized by strong irregularities in the cross section, by 
a rather steep part in the first kilometers and by a low base discharge 
(708m3/s) which, altogether, produce a high velocity basic flow, 
transcritical in some parts. More specifically, we consider the problem 
of floods observed in this river in 2012 because it is a classical example 
of time dependent nonlinear flow with shocks to expect floods and to 
test conservation in numerical schemes. Furthermore, we assume that 
this model is generated by the 1-D complete shallow water equations 
with source terms for the ideal case of a flat and frictionless channel 

with prismatic cross section, i.e., constants top width (T=348m) and 
wetted perimeter. (P=366.4m) Using the initial data provided by 
the river: ( )0, 2690.6=fQ t , ( )00, 200 708= =Q t , A(0,tf)=2364 and 
A(0,t0=200)=635.8 straightforward computations show that the initial 
conditions are defined as follows

( ) ( )0 0

708exp(2 ), 0 2; 635.8exp(2 ), 0 2;
, , ,

708exp(2 ( )), 2 . 635.8exp(2 ( )), 2 .
π π

π π
≤ ≤ ≤ ≤ 

= = − ≤ ≤ − ≤ ≤ 

i x if x L i x if x L
Q x t A x t

i L x if L x L i L x if L x L   (42)

where t0 is the initial time (t0=200s), A(x,t) is the area of cross section 
and ( , )Q x t  is the discharge.

The calculation times used are so as to avoid the interaction with 
the boundaries of the channel. So the boundary conditions are given by

( ) ( ) 0.0328
1 0( ) , 0, exp( )π= = = = tg t Q L t Q x t e i t                                                             (43)

and

( ) ( ) 0.0323
1 0( ) , 0, exp( )π= = = = th t A L t A x t e i t .                                                            (44)

Indeed, the study is done in the channel on 4 October 2012 and 
whose the purpose is to expect floods in the next years. Although the 
problem is defined by a system of shallow water equations with source 
terms, it is considered as a system of hyperbolic partial differential 
equations and can serve as a standard test case for validation of 
schemes whenever an analytical solution is known. Starting from 
initial and boundary conditions given by still water, the theory of 
characteristics can supply an exact evolution solution [27] that can be 
used as a reference. In the example presented, when using the initial 
and boundary conditions given by relations (42), (43), and (44), simple 
calculations yield the values of parameters a1, a2, b1, b2, tf, L, Kλ, defined 
in section 4, i.e., 

1
0

ln(635.8) 0.0323= ≅a
t

, 2 2 3.1416π= = ≅a b , 1
0

ln(708) 0.0328= ≅b
t

, 2 6.28λ π= ≅k m  

and  0
ln(2690.6) ln(2364) 240

ln(708) ln(635.8)
−

= ⋅ ≅
−ft t s , where t0=200S is the initial time, tf is 

the final time, Kλ is the wave number, and 1 0 40= − ≅fT t t s  is the time 
interval length. Using the definition of ( )0,Q L t  together with the 
boundary conditions we have ( )0 1 0 2 0, exp( )exp( ) 708λ= + =Q L t b t ib t ik L , so 
we can take L=1000m where L is the rod interval length for the ideal 
case of a flat and frictionless channel with prismatic cross section. In 
addition, the averaged shear stress is assumed equals zero, i.e, τ=0, the 
manning’s number (n1) equals 1 30.025s m , and the rainfall intensity 
I(x,t) is described according to relation (32), i.e.,

0( , ) ( , ) [0, ] [ , ];
( , )

0 ,
∈ ×

= 


fI x t if x t L t t
r x t

otherwise
                                                

where I is the rainfall intensity defined by relation (45), t0 =200S 
and tf =240S are initial and final time, respectively, of the rainfall 
excess computed above, and L=1000m is the rod interval length. The 
approximate solutions given by numerical schemes (30) and (31) 
obtained from 20 to 10850 iterations, respectively, are displayed in 
Figures 1 and 2. Using the experimental values of parameters a1, a2, 
b1, b2, P, T, n1 and g, computed above one easily shows, according 
to relation (36) that 10.5∆

∆ ≤x
tN  for all values of  Δt and Δx satisfying 

Δt, 1
2

∆ ≤x  and 1
1
2 7.7µ + ≤

a tg e
T

, for all [200;240]t∈ . Different values 

of k=Δt=8.2×10-4S, k=Δt=8.2×10-3S and k=Δt=8.2×10-2S  numbers 
obtained from (37) as the steady flow cases and both space steps of 
Δx=5m, Δx=2×10-1m and Δx =10-1m  in the mesh are used. Before 200 
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iterations are encountered, the discharge wave propagates with almost 
a perfectly constant value at different times (Figures 1 and 2). Further, 
after 200 iterations are encountered, the discharge wave also destroys at 
different times (Figures 1 and 2). So, the graphs show that the solution 
of the difference equations may grow with time (for example, Figure 
1 (test 5) and Figure 1 (test 3)) and still satisfy the Von Neumann 
necessary condition. On the other hand, we obtain similar observations 
for the cross section. Furthermore, the figures indicate that the cross 
section starts to destroy after a fixed time and can become negative. 
Moreover, combining the different values of Δx and  Δt we observe from 
the figures that the cross section also can become negative if the ratio 
∆
∆

t
x

 is less than 1.64×10-3. Thus, it is not hard to see that good solutions 

are obtained for a small time step Δt and a mesh size Δx satisfying 

the stability limitation (37) along with the estimate 24.1 10−∆
≥ ×

∆
t
x

. 

Physical insight must be used when the stability limitation (37) of the 
Lax-Wendroff method is investigated. Finally, the figures show that the 
solutions do not increase exponentially with time. More specifically, 
they indicate that stability for the Lax-Wendroff scheme is subtle. It is 
not unconditionally unstable, but stability depends on the parameters 
Δx  and Δt as show Figures 1 and 2. We conclude that the numerical 

examples indicate the crucial role played by the ratio ∆
∆

t
x

.

Similarly, the MacCormack method which is a predictor-corrector 
version of the Lax-Wendroff scheme provides a reasonably good 
result at discontinuities. This method is much easy to apply than the 
Lax-Wendroff scheme because the Jacobian does not appear. The 
amplification factor and stability requirement almost are the same as 
presented for the Lax-Wendroff method [26] case of inviscid burgers 
equation). It is important to note that the solutions obtained for the 
same problem at the same courant number are different from those 
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Figure 1: Cross-section (in green) and Discharge (in blue) profiles obtained from the Lax-Wendroff scheme for 1D complete shallow water flow 
in a prismatic channel.
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obtained using the Lax-Wendroff scheme. This is due both to the 
switched differencing in the predictor and the corrector and the 
nonlinear nature of the governing PDE. One should expect results 
that show some differences, even though both methods are equivalent 
for linear problems. In addition, it should be noted that reversing 
the differencing in the predictor and corrector steps leads to quite 
different results. The best resolution of discontinuities occurs when 
the difference in the predictor is in the direction of propagation of the 
discontinuity [26].

General conclusion and future works
In this paper, we have presented a mathematical model of 1-D 

complete shallow water equations with source terms and we have 
described the Lax-Wendroff scheme for these hyperbolic partial 
differential equations in the case of a prismatic channel. The stability 
analysis of the method is also considered and deeply studied together 
with some numerical experiments. From this analysis it follows that 
while the stability limitation is highly unusual, the result has a potential 
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Figure 2: Cross-section (in green) and Discharge (in blue) profiles obtained from the Lax-Wendroff scheme for 1D complete shallow water flow 
in a prismatic channel.

positive implication since the stability requirement presented in this 
work controls the famous Courant-Friedrich-Lewy condition which is 
well known in the literature. In the future, the following problems will 
be subject of our investigations.

1.	 Stability analysis and second order accuracy of the Lax-
Wendroff scheme for 1-D complete shallow water problems in an open 
channel;

2.	 Stability analysis of two steps explicit MacCormack scheme 
for 1-D complete Saint-Venant equations with source terms in the case 
of a prismatic channel;

3.	 Analysis of stability and second order accuracy of two 
steps explicit MacCormack method for 1-D complete shallow water 
problems with source terms in the case of an open channel.
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