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Abstract
Thyroid Hormones (THs) play an essential role in development and hormone deficiency during critical phases in fetal life 

may lead to severe and permanent brain damage. Maternal iodine deficiency is considered the most common cause of fetal TH 
deficiency, but the problem may also arise in the fetus/neonates. Due to defects in fetal thyroid gland development or hormone 
synthesis, clinical symptoms at birth are often mild as a result of compensatory maternal TH supply. A shortage of THs starting at the 
early stages of pregnancy results in neurological deficits that cannot be rescued by exogenous TH addition at later stages. Neonates 
are more sensitive than adults to the effects of iodine deficiency. Thus, these disturbances may lead to abnormalities in the neuronal 
network and may result in mental retardation and other neurological defects, including impaired motor skills and visual processing. 
Thus, iodine defenses programmes can avoid adverse neurodevelopmental consequences in mothers and their offspring.
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Introduction
Several reports are listed on the harmful effect of Thyroid Hormone 

(TH) deficiency during the development [1-7]. Iodine is essential 
for pregnant and lactating women, as well as infants [8]. Pregnant 
women in USA have been shown to have mild iodine deficiency [9]. 
Marginal iodine deficiency is a common health problem in pregnant 
women [10].  Iodine deficiency disease is the most common cause 
of preventable mental deficiency in the world today [11]. Maternal 
hypothyroxinemia can induce neurodevelopmental impairments 
in the developing fetus [12]. In rodents, several neural populations 
have been shown to be sensitive to hypothyroidism during the pre- 
and postnatal periods [13]. In rats, TH deficiency during fetal and 
neonatal periods produces deleterious effects, such as reduced synaptic 
connectivity, delayed myelination, disturbed neuronal migration, 
deranged axonal projections, decreased synaptogenesis and alterations 
in levels of neurotransmitters [14,15]. In addition, a lack of TH in 
the postnatal period of rats causes an irreversible mental retardation, 
characterized by a slowing of thoughts and movements accompanied 
by prolonged latencies of several evoked potentials and slowed 
electroencephalographic rhythms [16]. Therefore, this review will deal 
with several important topics, sometimes controversial and which 
still are not completely settled: what is the effect of maternal iodine 
deficiency on the fetal and neonatal thyroid state, and its effect on the 
brain and neural development. Also, the goal of this review is to place 
the exciting advances that have occurred by the previous authors.

Maternal Iodine Deficiency
Iodine is a key component of the THs, which are critical for 

healthy growth, development and metabolism [17]. Adequate 
iodine is important during pregnancy to ensure optimal growth and 
development of the offspring [18,19]. Also, adequate levels of iodine 
during pregnancy are essential for fetal neurodevelopment, and mild 
iodine deficiency is linked to developmental impairments [17,20]. 
The factors responsible for a higher requirement of iodine [11] are: (a) 
increased requirement of Thyroxin (T4) to maintain a normal global 
metabolism in the mother, (b) transfer loss of T4 and iodide from the 
mother to the fetus and (c) increased loss of iodide through the kidney 
due to an increase in the renal clearance of iodide in pregnancy. During 
pregnancy, iodine deficit produces an increase in perinatal mortality 
and low birth weight which can be prohibited by iodated oil injections 
given in the latter half of pregnancy or in other supplementary 
forms (European Commission, 2002) [21]. It is known that iodine 
deficiency during pregnancy can interfere with normal fetal growth 
and development [10]. The epidemiological studies recommend that 

hypothyroxinemia, especially at the beginning of gestation, affects 
the neurological development of the new human being in the long 
term [22,23]. Full-scale clinical studies have confirmed a connection 
between maternal thyroid insufficiency during gestation and a low 
neuropsychological development in the neonate [24]. In fact, the 
most severe neurologic injury resulting from a thyroid deficiency is 
in endemic cretinism initiated by iodine deficiency [4,25,26]. During 
the first gestational trimester, maternal hypo-thyroxinemia limits 
the possibilities of postnatal neurodevelopment [27-37]. The most 
serious form of brain lesion links to neurological cretinism, but mild 
degrees of maternal hypo-thyroxinemia also produce variations in 
psychomotor development [38-41]. The neurologic impairment 
happens primarily in the second trimester, which is a vital period for 
formation of the cerebral cortex, the extrapyramidal system, and the 
cochlea, areas damaged in endemic cretins [42]. Iodine deficiency 
in fetus results in miscarriages, stillbirths, brain disorders, retarded 
psychomotor development, speech and hearing impairments [43]. 
Iodine deficiency in infants can damage the developing brain and 
increase mortality [44]. 

On the other hand, Zhang et al. (2015) [45] reported that iodine 
supplement in early stage of pregnancy could improve the cell 
migration of cerebral cortex and neurodevelopment of offspring. 
The oral administration of a single dose of iodized oil is capable of 
correcting iodine deficiency both clinically and endocrino-logically 
in mothers and neonates [46,47]. Iodine supplementation has the 
potential to positively impact the birth weight of newborns. For 
mothers, consumption of iodized salt, iodized fish sauce, and iodine 
fortified food can improve iodine status of mothers while for infants, 
initiating breastfeeding soon after birth and maintaining exclusive 
breastfeeding can help infants achieve optimal nutritional status 
[8]. Sukkhojaiwaratkul et al. (2014) [48] recorded that maternal 
iodine supplementation improved iodine nutrition in their breast-
fed offspring. A trend toward declining in cord serum Thyrotropin 
(TSH) values after iodine supplementation indicates improvement 
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of iodine status during pregnancy. 

TH Deficiency and Neuronal Development
TH insufficiency during a critical developmental period can damage 

cellular migration and development of neuronal networks. Neuronal 
outgrowth and cellular migration are dependent on normal microtubule 
synthesis and assembly and these latter processes are regulated by 
THs [4,49]. During fetal and neonatal development, hypothyroidism 
results in delayed neuronal differentiation and diminished neuronal 
connectivity [33-37,49]. Interestingly, deficient cellular maturation in 
the cerebral cortex of hypothyroid rats is characterized by [4,50] the 
following: (a) Smaller neuronal cell bodies that are more tightly packed 
than those in euthyroid animals; (b) Diminished axonal and dendritic 
outgrowth, elongation, and branching; (c) Reduced numbers of 
dendritic spines. Inadequate cellular differentiation results in markedly 
reduced synaptogenesis; (d) Diminished myelination of neuronal 
axons; (e) Changes in callosally projecting neurones, which may be 
due to the maintenance of a juvenile pattern of projections [51]; and 
(f) Alterations in dendritic morphology and structure in several cell 
types, including pyramidal cells in the cortex (decrease in dendritic 
spine number) [52]. 

On the other hand, in cerebellum, a hypothyroid rats exhibit a 
persistent External Granule cell Layer (EGL), reduced proliferation 
of granule cells of rat brain in the EGL [53,54] and slowed migration 
of granule cells into the internal granule cell layer (IGL) [55,56]. Also, 
the absence of TH during the first postnatal weeks causes profound 
Purkinje cell hypoplasia [57]. In addition, ectopic localization of 
neonatal Purkinje cells is a typical abnormality found in the hypothyroid 
cerebellum, which remarkably also occurs to much higher extent in 
reeler mice [58]. Anderson (2001) [59] depicted in the hypothyroid 
rat cerebellum that: (a) A reduction in Purkinje cell dendritic 
arborization; (b) A delay in granule cell migration from the EGL to the 
IGL and cell death is increased; and (c) A reduction in parallel fiber 
outgrowth and migration of the granule cells. Concurrently, the effects 
of hypothyroidism in the hippocampus [60] include: (a) A reduction 
in the number of dentate gyrus granule cells [61]; (b) A decrease in 
pyramidal cell spine densities [62]; (c) Changes in kainate-induced 
gene expression [63]; (d) A decrease in the number and size of dendritic 
spines of Purkinje cells [64]; and (e) A decrease in the branching of 
apical and basal dendrites granule and pyramidal cells [65]. Also, iodine 
deficiency causes an impaired maturation of hippocampal radial glial 
cells, which are involved in neuronal migration [66]. Specific alterations 
in dendritic morphology have been identified in the granule and 
pyramidal cells in the hippocampus due to TH deficiency [52,65-70]. 

Defects in synaptic architecture induced by TH insufficiencies, 
as well as deficiencies in protein substrates involved in complex 
signaling pathways serious for synaptic plasticity, culminate to disturb 
hippocampal neurophysiological function [67]. An irregular laminar 
distribution has been described in the auditory cortex of hypothyroid 
rats, including an increased number of neurons in layers V/VI, a 
concomitant diminution in layers II to IV, and the abnormal presence 
of neurons in the subcortical white matter [33,69-76]. Finally, a 
reduction, or absence, of TH during brain maturation yields molecular, 
morphological and functional alterations in hippocampus [34,60,74-
77]. Interestingly, the neurodevelopmental impairments induced by 
hypothyroxinemia suggest an independent role of T4 [12].

Future Direction
Whatever the mechanisms, the reported data require a reevaluation 

of which disturbance could result in irreversible and permanent 

damage to the developing thyroid-brain axis (Figure 1). The resolution 
of this review will require additional evidence at a molecular level either 
demonstrating a direct action of the THs on the fetal brain or additional 
evidence supporting the suggestion that the observed effects of maternal 
iodine deficiency on fetal development are explained by impaired 
gestation [78-81]. Thus, the adverse effects of maternal hypothyroidism 
on fetal development are mediated directly by loss of the maternal 
hormones contribution to the fetus, indirectly by metabolic impairment 
of gestation, or both. In addition, future attention should be focused on 
identifying a non-genomic approach because of there is scant evidence 
and these actions of TH differ across the developmental time and brain 
region [82,83]. 
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