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Abstract

Sex outcome and maternal investment in progeny are important predictors of reproductive success. While
environmental factors appear to influence these processes, there is little evidence to date of a direct role for gut
commensals. Here we show that the reproductive outcomes (sex and survival) of mouse litters depend on signals
conveyed through the microbiome. We discover that transient treatment of mouse mothers with specific micro-
organisms increases the absolute survival of offspring and skews offspring sex ratios via an endocrine-dependent
mechanism requiring the neurophysiological hormone oxytocin. The implication of maternal oxytocin levels suggests

that commensal microbes may have a broad role in modulating host endocrine and neurological pathways.

Keywords: Lactobacillus reuteri; Oxytocin; Sex ratio

Introduction

Factors governing important predictors of reproductive success,
such as maternal investment in progeny, remain poorly understood
[1-4]. The great importance of gut microbiota in mammalian host
health is only recently being recognized in full [5-8]. It is known that
consumption of a Westernized diet can alter the microbiota in mice
[9-12] commensurate with infanticide, leading us to postulate a
microbe-dependent mechanism of action in maternal investment. To
test this hypothesis, we surveyed C57BL/6 mice to determine whether
there were changes in the survival of offspring and sex ratio associated
with targeted consumption of a specific microorganism.

Lactobacillus reuteri (LR) is widely applied as a model beneficial
microbe in humans and animal models [13-18]. During a recent study
we observed that female mice consuming LR showed more frequent
grooming activity, an aspect of maternal behavior regulated by
neurohypophyseal hormone oxytocin [19-21]. Intriguing roles for
oxytocin in diverse aspects of health have recently emerged [22-26].
Mechanisms by which gut microbiota may impart effects that expand
beyond the gastrointestinal tract remain largely unknown but involve
neuroendocrine and immune pathways [19,27-33]. When consuming
LR, mice also display sex-specific phenotypes in skin and vaginal pH
and immune response likely to have consequences on reproductive
success [34]. Evidence for sex-specific effects on pH levels, oxytocin
and immune response in mice fed LR gave a foundation for these
studies [34].

Microbe-dependent changes in maternal care and sex ratio likely
arise from modified endocrine signaling [1,32,35-41]. Here, we
investigate whether microbe-dependent hormone changes alter sex
ratios. In previous studies, we found significant upregulation of the

neurohypophysial hormone oxytocin in female mice consuming LR
[34,37]. Oxytocin plays a central role in mammalian reproductive and
social behaviors, and is produced in high quantities during birth.
Administration of oxytocin induces reproductive behaviors and
produces neuronal activity observed during mating. Oxytocin-
deficient mice exhibit social amnesia with reduced bonding and social
behavior [21]. Recent evidence suggests a role for oxytocin in autism
spectrum disorder [42] and post-partum depression, as well as pair
bonding, anxiety, and maternal care [43-47]. Because these and other
social and reproductive disorders implicate oxytocin, there is great
interest in assessing whether an underlying microbial determinant
may be modifying the central nervous system vis-a-vis direct or
indirect influence on the activity of oxytocin in the body. Interestingly,
oral therapy of B. fragilis alleviates stereotypic autism-like behaviors in
a mouse model known to display features of autism, reinforcing the
potential for microbial control of neurological disorders [41]. To test
whether gut microbe influence over oxytocin played a role in the sex
ratio outcomes observed here, we used Oxytocin-Knockout (KO)
mouse mothers to assess whether sex ratios differed in offspring of
these mice compared to matched controls. Our results suggest that the
distribution of sex ratios in mice differs depending on maternal gut
microbes that influence these outcomes through a neurophysiological
and, in particular, oxytocin-dependent mechanism. The centrality of
oxytocin in these outcomes suggests potential associations with autism
and post-partum depression [42,43], offering promise for gut microbe
therapy in these and related disorders.

Experimental Procedures

Animals

Wild type C57BL/6] and oxytocin-deficient B6.129S-Oxttm1Wsy/]
mice (Jackson Lab; Bar Harbor, ME) were housed and handled in
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Association for Assessment and Accreditation of Laboratory Animal
Care (AAALAC)-accredited facilities with diets, experimental
methods, and housing as specifically approved by the MIT
Institutional Animal Care and Use Committee (MIT IACUC).
Treatment groups included five-ten mother mice per group examining
three consecutive litters of their progeny.

Experimental design: Eight-week-old C57BL/6 wild type female
mice were fed special diets as above, and paired three weeks later using
one male and one female per cage. Mating pairs consumed NWD
(N=6), control diet (N=6), and control diet + LR (N=9). Mother mice
were checked daily to record births. Survival rates and infant sex were
determined upon birth and at weaning, as below. Experiments were
conducted in duplicate.

Eight-week-old female oxytocin-deficient B6.129S-Oxttm1Wsy/]
or littermate wild type mice received supplementary LR in their
drinking water, and were then paired three weeks later using one wild
type male and one experimental female per cage. Mating pairs
consumed a control diet (N=10) or a control diet + LR (N=10).
Mother mice were checked daily to record births and infant sex
identity. Newborns from oxytocin-deficient moms were cross-fostered
to OXT-het mother mice, because OXT-KO mother mice are
incapable of lactation and nursing behaviors. Survival rates and sex
ratio were determined upon birth and at weaning, as below.

Special diets for animals
Mice of eight-weeks-of-age were placed on experimental diets:
1) control diet AIN-76A (Harlan-Teklad, Madison WI),

2) AIN-76A plus an anti-inflammatory strain of Lactobacillus
reuteri ATCC-PTA- 6475 (LR),

3) New Western diet (NWD) high in fat, and low in fiber and
nutrients including vitamin D (TD.96096; Harlan-Teklad).

L. reuteri was cultivated as described previously [34,48] using a
starting dosage of 3.5x105 organisms/mouse/day in drinking water.
Live bacterial counts in water bottles were calculated to be 1.4x106
colony forming units (CFU) per mouse after 24 hours, 4.1x105 CFU at
48 hours, and 1.1x105 CFU at 72 hours, when quantified as described
elsewhere [48]. Fresh drinking water was replaced twice weekly
throughout the experiments. Control mice received regular drinking
water. Confirmations of LR organisms in drinking water and in
experimental animals were performed as described previously [48].

Mice on various diets were subsequently arranged in breeding pairs
and examined as above.

Determination of survival rate
Infant survival rates were calculated using number of progeny
weaned/number of progeny born. Pregnant mice were checked daily.

Determination of sex

Sex was determined upon birth or weaning (21-24 days) using
standard anogenital distance measurement from anus to genital
opening. Measurements were standardized using animal body weight
and length.

Statistical analyses

To determine the relative effects of diet on survival, we chose to
apply a binomial regression model, in which the response is one of two
mutually exclusive outcomes. Outcomes are binary for both sex (male/
female) and survival (live/dead), with dependency on categorical
experimental variables. Each cage was considered a replicate, so the
response from a single cage was the ratio of surviving offspring to non-
surviving offspring (measured at weaning). The model takes the form:

log(p/(1-p))=p0+p1*X

Where p/(1-p) is the odds ratio, p the proportion of surviving
offspring, (1-p) the proportion of non-surviving offspring. Each X can
be a categorical variable (in this case, diet), and the 1 value gives an
estimate of the differences due to these variables. Significance is
determined by a Z-test on the parameters of interest using null f1=0
and alternative Pp1/=0. Statistical tests were performed in R (http://
cran.r-project.org). The same model was applied to determine whether
the fraction of females differed by diet, where response was the ratio of
females to males. Samples were partitioned by litter to control for
parental effects.

Results

Maternal probiotic consumption increases the survival rate
of offspring

We had previously examined age-associated weight gain in mice
consuming a high-fat, low-nutrient New Western Diet (NWD)
mimicking ‘fast food’ consumption [9] shown in previous work to
alter the composition of the microbiota [10]. In order to test the
influence of a Westernized diet on subsequent generations, we fed
C57BL/6 mouse mothers NWD starting three weeks prior to mating.
We then monitored the sex and physical characteristics of their
offspring over three successive litters.

We noted differences in survival between groups of offspring
corresponding to diet. Survival for all groups increased with successive
litters. We chose to apply a Binomial Logistic Regression (BLR) model
with the odds ratio of survival, given that survival is a binary outcome,
as the response and diet as the predictor. We found that the offspring
of NWD exhibited significantly different odds of survival from their
control counterparts across all litters, even when incorporating the
observation of increased survival in successive litters. The log(odds)
ratio for survival of offspring from NWD-fed mice was -1.04 + 0.41
(xs.e., d.f.=26, Z=-2.52, p=0.0012). The 95% confidence interval for
the ratio of surviving offspring in NWD compared to control was
(0.233,0.533), indicating a 2-5 fold decrease in survival in NWD-fed
mice. Infant progeny of mothers fed control diet exhibited increased
survival over mice eating NWD, indicating that the stress diet appears
to influence negatively the probability of offspring surviving past
weaning (Figure 1). Given that consumption of NWD is known to
alter the composition of the microbiota [10], we hypothesized the
changing microbial presence may have a role in differential survival
between groups independent of other diet-dependent variables.
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Figure 1: Fraction of surviving offspring of total offspring measured at weaning. C57BL/6 mothers were fed either control diet, New Western
Diet (NWD), or dosed with Lactobacillus reuteri (LR) in their drinking water for the duration of the experiment. Fractions indicate composite
survival of offspring across three consecutive litters. Both NWD-fed and LR-fed mice showed significant differences in offspring survival
compared to control (p=0.0012, 1.5e-4).

To investigate the role of gut commensal microorganisms in
survival of offspring in mouse litters, we made a targeted intervention
through feeding mouse mothers a single probiotic microorganism. In
previous work, we found that mice consuming Lactobacillus reuteri
(LR) in drinking water display sex-specific phenotypes in skin and
vaginal pH and immune response that are likely to have consequences
on reproductive success [3]. We investigated whether transient
administration of LR to drinking water could affect changes in
reproductive outcomes in mouse mothers, and thus be indicative of a
microbe-dependent mechanism. To test this hypothesis, we
administered 3e6 CFU/mL LR into the drinking water of C57BL/6
mouse mothers (corresponding to approximately 1e7 CFU dosage/day
assuming no loss in cell viability) every 7 days with feeding of a
nutritionally balanced control diet. We then surveyed mouse births
and rearing to determine whether there were changes in the survival of
offspring with less maternal neglect or cannibalism associated with
targeted consumption of this probiotic microorganism.

We found a significant increase in offspring survival for mouse
mothers fed LR. In contrast to the reproductive outcomes for the mice
fed NWD, the log(odds) ratio for survival of offspring from L. reuteri
fed mice was 2.50+0.66 (ts.e., d.f=26, Z=3.78, p=1.5e-4). The
corresponding 95% confidence interval for the odds ratio (3.36, 44.4)
indicated an increase in survival compared to the control (Figure 1).
This result indicates that supplementation with ZR alone increased the
number of surviving offspring, supporting the hypothesis of a
microbial determinant for this reproductive phenotype.

Maternal consumption of probiotic bacteria influences the
sex ratio of offspring

Because maternal exposures may have a role in offspring sex ratio
[1], we next tested whether there were differences in the sex outcomes
of mice dependent on whether their mother had consumed LR or not.
Evidence for sex-specific effects on pH levels and immune response in
mice fed LR further supported this hypothesis [34]. We tested whether
there were changes in sex ratio associated with consumption of LR in
C57BL/6 mice. Examining the number of males and females at birth
and subsequently at weaning, we tested for the effect of consuming ZR
on offspring sex ratios again using BLR with ratio of females to males

as the response to diet. Because sex ratio outcomes varied across litters,
we analyzed each litter separately in addition to assessing the overall
population (Figure 2). In the first litter, there was no significant
difference in sex odds in the offspring of mice fed L. reuteri (d.f.=7,
Z=1.12, p=0.26), but in the second litter, the effect was significant with
the offspring of L. reuteri-fed mice exhibiting a log(odds) ratio of
1.69+0.61 (#s.e., d.f.=9, Z=2.61, p=0.0091), with 95% confidence
interval for odds (2.75, 16.47). This effect was not as significant in the
third litter (d.f.=10, Z=1.82, p=0.068). Across all three litters, the effect
of L. reuteri on sex outcomes was significant, with log(odds) ratio 1.11
+ 0.35 (xs.e., d.f.=28, Z=3.16, p=0.0016) and 95% confidence interval
for odds (2.14, 4.32) (Figure 2).

Because the effects on sex ratio arise even after treatment with a
single microbe we inferred the existence of a microbe-mediated
alteration in sex outcomes.

Maternal microbial effects on infant sex ratio require the
hormone oxytocin

We hypothesized that the observed changes in sex ratio and
offspring survival may depend on an endocrine-mediated mechanism
in the maternal host. In mammalian hosts, maternal nurturing
behaviors require the production of oxytocin. In our previous studies,
we found significant upregulation of oxytocin in female mice
consuming LR [34,37]. We used 129 strain Oxytocin-Knockout (OXT-
KO) mouse mothers and their wildtype littermate mothers to
determine if sex outcomes differed because of the absence of oxytocin.

Because the offspring of OXT-KO mice must be fostered onto
competent mothers, we measured sex ratio outcomes at birth rather
than at weaning. To measure differences in offspring sex ratio with
both genotype and diet as factors, we constructed a binomial logistic
regression including these factors and their interaction. Genotype
alone had a significant effect on offspring sex ratios (BLR, df=85, |Z|
=3.085, p=0.002) as well as the interaction of genotype and treatment
(BLR, df=85, |Z|=2.316, p=0.0205). These results indicate that oxytocin
deficiency tends to decrease the overall ratio of females to males in the
offspring, while treatment across groups did not result in significantly
different outcomes (Figure 3).
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Figure 2: Fraction of females in C57BL/6 offspring whose mothers
were fed control diet or L. reuteri. Mouse mothers fed L. reuteri
exhibit a significant difference in the fraction of females of their
offspring compared to untreated counterparts (p=0.0016).
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Figure 3: Fraction of female offspring with or without LR treatment
across genotypes in 129 strain mice. In the absence of oxytocin, LR-
treated mice do not show an increase in the fraction of females in
their offspring, while ZR-treated wild type mice increase the female
fraction of their offspring (p=0.002).

Comparing the LR-treated animals to untreated animals mutes the
important interaction of genotype with treatment, where we see
significant differences between the sex ratios of LR-treated wild type
mice and LR-treated oxytocin deficient mice. Under the null
hypothesis that microbe-mediated maternal effects on sex ratio do not
require oxytocin, we expect that there should be no differences
between the outcomes of OXT-KO and WT mice when treated with
LR. However, we find that the WT mice exhibit significantly elevated
ratio of female to male offspring when compared to OXT-KO mice.

As a consistency check, there are no significant differences in
offspring ratio between untreated WT and KO mice (BLR, df=41, |Z]
=0.017, p=0.987) nor between knockout mice treated with LR or not
(BLR, df=29, |Z|=0.375, p=0.708). In line with our original findings, in
these mice there are still strong differences in sex ratio outcomes
between LR-treated and untreated wild type mice (BLR, df=54, |Z|
=3.58, p=3.46e-4). Taken together, our results give substantive
evidence for the importance of oxytocin in mediating microbial
control over host offspring sex ratios. That a specific organism
modulates control over maternal reproductive outcomes in an
oxytocin-dependent manner suggests that these microbes play an
intimate role in fitness of their mammalian hosts.

Discussion

These data support a role for maternal microbes in controlling
several features of maternal care for offspring and physical
characteristics such as offspring sex ratios. Because the effects on sex
ratio arise even after treatment with a single microbe, LR, there
appeared to be a microbe-mediated alteration in host factors. We
determined that: 1) offspring survival depended on treatment with the
probiotic LR, 2) sex outcomes of mice depended on microbial
exposures of their mother, 3) microbial effects on sex ratio and
offspring survival depended on maternal oxytocin, and 4) maternal
microbial exposures regulated the effects of oxytocin. To our
knowledge this is the first report of microbes altering mammalian
offspring sex ratio, one key factor predicting reproductive success of
the microbes and their hosts. We conclude that host organisms
develop and evolve both their nature and nurture dependent on their
microbial commensals. Thus, the microbiome in concert with its
maternal host determines the nature and nurture of her offspring.

We used each dietary treatment to infer that gut commensal
microbes altered maternal state in such a way that LR improved and
NWD diminished offspring survival. We found that a mouse mother’s
consumption of the NWD chow negatively influenced the survival of
her offspring. Given that the microbiome undergoes a drastic shift
[9-11,45] after feeding of westernized diets, we postulate differences in
sex ratio outcomes depended, at least in part, on the specific microbes
and of their mother. Indeed, feeding of LR was previously shown to
acidify vaginal pH levels in mice, indicating that vaginal pH may serve
as a discriminating feature for some of these outcomes [34]. It remains
to be shown whether maternal microbiota and vaginal pH levels
influence sex ratio and maternal care in human subjects.

We find that gut microbes can manipulate host oxytocin levels to
alter successive generations, having shown an up-regulation of
oxytocin following administration of LR [34,37] and a maternal
microbe-derived, oxytocin-dependent change in offspring sex and
survival. Because we observed sex outcomes at birth, we were able to
conclude that the sex effect of oxytocin manifested prior to
parturition, removing potential biases from social and behavioral
impairment related to oxytocin deficiency that would affect maternal
care patterns. Implication of oxytocin in these outcomes suggests
potential associations with certain neurological disorders including
autism [42] and post-partum depression [43,46,47] with an underlying
microbial determinant. Taken together, the present data show that a
specific organism modulates control over maternal reproductive
success in an oxytocin-dependent manner where microbes play an
intimate role in the fitness outcomes of their hosts.
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Co-evolution between host and microbe provides an integrative
mechanism by which mothers may skew the sex ratios of their
offspring in such a way to optimize for specific environmental
conditions [32,35-41]. Under favorable conditions, probiotic bacteria
may impart a bias toward female births, as they are then passed from
mother to naive offspring during vaginal birth and nursing, imparting
evolutionary success to both the symbiotic bacteria and their
mammalian hosts. In natural populations, there is empirical evidence
for the impact of maternal environment on offspring sex ratios [2].
The transmission of environmental information by microbial
commensals appears to occur via an oxytocin-dependent mechanism,
consistent with findings of other groups on a stress-mediated
modulation of sex ratios [2-4]. The intimate bond between a host and
its microbiome provide a means by which both may influence the
fitness of the other, sometimes manifesting in transgenerational
effects.
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