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Introduction
The age of metabolomics arrived in recent decades after genomics 

and proteomics dominated in biomedical sciences due to their 
applications [1]. Powerful techniques in the later cases such as 
transcript analysis, protein expression studies were useful to determine 
the molecular mechanism of biological phenomena at genomics and 
proteomics level [2,3]. During those past periods, biochemistry had 
very least role although the analyses of metabolites using individual 
conventional biochemical techniques had been used from past centuries. 
This is because; biochemist still had no powerful and reliable techniques 
to analyze the metabolites and proteins in biological samples. May be 
this is one of the major reasons why mass spectrophotometry (MS) 
was necessary and eventually discovered, followed and now has been 
established as the most advanced technique in biochemistry [4]. Due 
to its reliability, reproducibility, wide applicability and contribution in 
modern biomedical sciences, the technique is now dominating over 
most of the genomics and proteomics techniques. The fundamental 
rule in MS is that it ionizes  individual chemical species  and sorts 
the ions based on their mass to charge (m/z) ratio [5]. Therefore, having 
uniqueness for the above character, each molecule in purified form or 
in homogenate can be identified and quantified too. In simpler terms, 
a  mass spectrum  measures the masses within a sample by enabling 
them to be charged during measurement. Mass spectrometry is used in 
many applied and basic sciences and is applied to analyze isolated pure 
samples or complex mixtures in bio-medical sciences. This particular 
technique can be used to identify abnormal or disordered proteins/
metabolites for quantitative and qualitative analyses of metabolites 
under experimental or in diseased condition conditions [5]. 

The history of MS goes back to 18th century when Eugen 
Goldstein  noticed in 1886 that  rays travelled under electric field are 
perforated and deflected to cathode depending on their positive 
charges. He named these deflected charged  anode (positive) rays  as 
"Kanalstrahlen" which means "canal rays" in English [6].  Wilhelm 
Wien crossed the mile stone in 1899 in similar experiments. He found 
that canal rays are deflected by strong electric or magnetic fields. Based 

on the results, he was able to build a machine in which positive rays 
were separated under parallel electric and magnetic fields on the basis 
of their charge-to-mass ratio (Q/m) [6]. He noticed that the type and 
nature of the gases used in the discharged tube influence their Q/m ratio. 
Then work of Wien was improved by the British scientist JJ Thomson 
who was able to reduce the pressure of the measuring environment to 
generate the mass spectrograph. The word “spectrograph” obtained by 
such devices  was systematically introduced internationally in science 
and was became a part of the scientific vocabulary in 1884 [7-9]. Owing 
to the importance of the technique, it has evolved with new adjustments 
and advances with specific requirement. In this article, general 
information is aggregated in this article on this particular technique to 
make its language simpler among the researchers. 

Why Mass Spectrophotometry?
Mass spectrophotometry has numerous advanced advantages when 

enlisted; it seems to replace many techniques in future. Some of the 
newer trends in biomedical and chemical sciences those use MS as 
their basic tool. The vast application of this technique already removed 
its various limitations to be used in other areas of sciences such as 
geology and space science [5]. Due to the complexity of the matrix of 
samples for example, blood or urine, requirement of more sensitivity 
for low dose studies, and acquisition of data for long time point (for 
example for sustained release) of drugs, MS has its unique importance 
in pharmacokinetics. Most commonly used instrumentation in 
pharmacokinetics with the above needs is  liquid chromatography 
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Abstract
Present century is the era of life sciences and metabolomics is the dominating field in present day over genomics 

and proteomics. Powerful techniques in the later cases are useful to determine the qualitative and quantitative 
studies of the levels of metabolites in bio-medical samples. In past time, biochemistry had very least role because the 
analyses of metabolites using individual conventional biochemical techniques had been used from past centuries. 
Owing to this limitation, mass spectrometry (MS) was introduced in bio-medical sciences. The fundamental rule in 
MS is that it ionizes individual chemical species and sorts the fragmented samples at charged state (ions) on the 
basis of their mass to charge (m/z) ratio. Therefore, each molecule in purified form or in homogenate can be identified 
and quantified based on their unique m/z ratio. In other words, MS measures the masses of the fragmented samples 
by enabling them to be charged during measurement. This particular technique has therefore, many applications 
starting from quantitative to qualitative analyses of metabolites under normal, experimental and diseased conditions 
in organisms including human being. Based on the method applied, sample preparation process, sample type, 
measurement process such as abundance or time of retention or flight of charged fragments etc., each MS vary with 
its own advantages and disadvantages. A general commentary article is written on this particular modern technique 
to make it understood and popular among the researchers.

Mass Spectrophotometry: An Advanced Technique in Biomedical Sciences
Biswaranjan Paital*
Department of Zoology, CBSH, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India 

Advanced Techniques in 
Biology & MedicineAdv

an
ce

d 
Te

ch
niques in Biology & M

edicine

ISSN: 2379-1764

Review Article

http://dx.doi.org/10.4172/2379-1764.1000182


Citation: Paital B (2016) Mass Spectrophotometry: An Advanced Technique in Biomedical Sciences. Adv Tech Biol Med 4: 182. doi: 10.4172/2379-
1764.1000182

Page 2 of 8

Volume 4 • Issue 3 • 1000182
Adv Tech Biol Med
ISSN: 2379-1764 ATBM, an open access journal

MS (LC-MS) with a triple quadrupole system [5]. Tandem MS is also 
preferred by many workers because for ensuring added specificity in 
drugs. The pharmacokinetics i.e. bioavailability or level of drug samples 
at different time points and the clearance rate from the body can easily 
be monitored using blood and urine. On the other hand, the high 
sensitivity of analyzers present in MS clears the path of pharmacologists 
to study  microdosing  principles. Analyzing the metabolites and 
determining the abnormal proteins in patients extended the use of MS 
in medical sciences. May be these are the reasons why many world class 
patho-laboratories use MS as one of the major techniques for analyses 
of medical samples [10-12]. It is believed that respiratory gas analysis 
in patients using MS had been done in beginning around 1975. Some 
of these machines are perhaps still used in some laboratories but their 
manufacture is stopped [13]. Some MS instruments are intentionally 
modified to simultaneously report the composites of gases that are 
respired by a patient although the mass range for the detection is 
limited to ~ 120 amu [14]. 

Quantitative analyses, characterization and  sequencing  in 
proteomic studies are now mainly based on MS due to its high 
accuracy of results. The protein(s) can be fragmented and ionized 
with  electrospray ionization  and  matrix-assisted laser desorption 
(MALDI)/ionization  or protein(s) can be enzymatically digested for 
example with trypsin  or  pepsin into smaller  peptides  and then be 
analyzed for peptide mass fingerprinting. Using tandem MS de novo 
peptide sequencing are now physible to be done [4,5].

In MS, one of the major advantages is the requirement of low sample 
and high sensitivity. In glycobiology, such application of MS than HPLC 
predominantly makes it preferable and reliable for characterization and 
elucidation of the structures and properties of glycans [15]. Several free 
and commercially sold softwares are available now days to interpret the 
MS data for structural elucidation of glycans [16,17]. Unbroken glycans 
are detected directly as single charged ions by using matrix-assisted 
laser desorption/ionization MS. Such glycans can be also better detected 
by permethylation/peracetylation followed by atom bombardment 
MS  (FAB-MS) [15].  Nevertheless, electrospray ionization MS  (ESI-
MS) is also used to study smaller glycans and this machine gives high 
sensitive signals too for the smaller glycans. High voltage is applied in 
ESI method to produce ions from macromolecules without breaking it 
which then can be detected by the detectors. 

Quantification and characterization of less abundant isotope with 
sensitivity is another uniqueness of MS. As a result, 16O/18O and 12C/13C 
isotope ratio can be determined in samples. Therefore, in evolutionary 
biology, MS is also used to analyze the age of trees or fossils by 
carbon dating or biogenous carbonate. Labeling a particular amino 
acid with stable isotopes of the composite elements is also used for 
quantification of protein(s) under different experimental conditions. 
Such instruments those quantify proteins with labeled amino acids are 
sometimes referred as isotope ratio MS. These MS work on the principle 
that they use one magnet to twist the beams of ionized fragments/
particles towards a series of  detectors (usually Faraday cups). The 
detectors then convert particle impacts as beams to  electric current. 
Most sensitive and perfect MS for this purpose is flowing afterglow MS. 
These MS are capable to measure individual atoms and nuclides with 
a range of ~ 1015 as compared to the major stable isotope [18]. Using 
specific ion flow tube,  reaction to transfer protons, several  chemical 
ionization  processes are used now days to analyze trace gases in air, 
breath or liquid headspace. Such modifications even are done by 
using particular reaction time and allowing the system to calculate 
concentrations of analyte(s) from known reaction kinetics. Such 

modifications will be helpful to analyze samples without using internal 
standard or calibration of the machine. The position of individual atoms 
in a compound is also mapped by combing two techniques out which 
one is MS. Such examples are combining atom probe based techniques 
such as time-of-flight  (TOF) MS and field-evaporation microscopy. 
Mass spectrometry techniques are also widely used in space research 
programs to identify and measure the composition of plasmas. 
Exploration of the elements of other planets and moons is also being 
done using MS [19]. For example, in the Cassini-Huygens mission, a 
specialized GC-MS with Huygens probe was sent to the atmosphere of 
Titan, the largest moon of Saturn. The GC-MS lunched with the probe 
in the atmosphere of Titan and analyzed its atmospheric samples and 
its descent trajectory. When the probe had landed on Titan, it was able 
to vaporize and analyze the frozen hydrocarbon samples that covered 
the surface. After such measurements, a comparison was made about 
the abundance of isotope(s) of each particle present in Titan to that 
natural abundance in earth [20]. Similarly, using Cassini Plasma MS in 
the Cassini spacecraft, the mass of ions in magnetosphere of Saturn was 
measured [21]. 

Mass spectrometry in early times 

Early spectrometry instruments that were able to measure the mass 
to charge (m/z) ratio of ions and therefore they were named as mass 
spectrographs. These devices were capable to record the  spectrum of 
mass values of elements onto a  photographic plate [22].  A  mass 
spectroscope is typically comparable to a mass spectrograph. However, 
the only exception is that beams of fragmented charged particles 
(ions) are directed and collected on a  phosphor  screen in later case 
[23]. The moniker “mass spectroscope” is used continuously even after 
the direct illumination of a phosphor screen was replaced by indirect 
measurements with an oscilloscope [24].  However, the term  “mass 
spectroscopy” is now discouraged to be used to avoid confusion with 
light spectroscopy [25,26]. Mass spectrometry shortly called as “mass-
spec”  or its generic name as  MS [26]. Due to the accuracy in both 
qualitative and quantitative analyses of metabolites and proteins, MS 
has wide applicability in bio-medical sciences which is discussed later 
part of this article. 

Early technique in MS was designed and modified by  AJ 
Dempster  and  FW Aston  in 1918 and 1919, respectively. Ernest 
O Lawrence then developed sector mass spectrometers  that are 
known as  “calutrons”. They  were basically utilized for separating 
the isotopes of uranium [27]. At the Oak Ridge, Tennessee Y-12 plant, 
Calutron MS was used for enrichment of uranium metal during World 
War II. Half of the Nobel Prize in Physics was shared in 1989 by two 
scientists namely, H Dehmelt and W Paul for the development of ion 
trap technique. They developed the technique in the year 1950s and 
1960s, respectively. Further, John Bennett Fenn developed electrospray 
ionization and Koichi Tanaka developed soft laser desorption in 2002. 
They demonstrated the application of their invention for ionization 
of bio-samples. Especially biological macromolecules mainly proteins 
were ionized by the machine. For their invention, they shared the Nobel 
prize in 2002 in Chemistry [28].

What is Mass Spectrum?

The mass spectrum  is a plot where the ion signals are plotted 
against the m/z ratio of molecules [8]. To determine the signature of 
elements or isotopes, such spectrum is used. It is also used to determine 
the masses of  molecules and to elucidate the chemical structures of 
compounds and chemical signature and sequences of peptides [29]. A 
typical MS procedure includes bombarding electrons to a sample that 
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may be in solid, liquid or gaseous form for ionization. It may result in 
fragmentation but charging of compounds present in samples. These 
fragments with charge (to form ions) are separated then as a function 
of their m/z ratio when they are moved under electric and/or magnetic 
field. The key factor is ions with same m/z ratio experience and show 
the same magnitude of deflection during their movements under the 
electric and/or magnetic field [26]. As the detector system in a simple 
spectrophotometer, the deflected ions are monitored and recorded by a 
detector capable to sense charged particles. Example of such a detector 
is an electron multiplier. As a result, the type and magnitude of charged 
compounds are shown as spectra that are directly proportional to the 
magnitude of the respective ions. And the relative abundance of the 
ions is quantified as a function of the m/z ratio. Each component in 
the sample after or without fragmentation will have unique spectra that 
will correspond to the fragmentation pattern or mass of a compound, 
respectively, in a purified sample or mixture. Based on such results, the 
purified compound or the constituents of a mixture relative abundance 
can be identified. It becomes possible by correlating the pattern of 
fragmentation or a reference compound with known characteristics 
and mass [5].

The instrumentation and moniker of mass spectrometer

Like a simple spectrophotometer, a MS consists of three 
fundamental components: an ion source instead of light source in 
spectrophotometer, a mass analyzer instead of a photomultiplier tube in 
spectrophotometer, and a detector, which is usually a phosphor screen 
or an oscilloscope in MS [30,31]. The  ionizer  as it named, ionizes a 
part of the fragmented sample into ions or simple add charges to the 
fragmented sample. Depending on the state i.e. solid, liquid or gas of 
the sample, the ionization techniques may vary. It can also vary for 
known and unknown samples and for the latter case, it vary as per the 
phase of the sample. After ionization, an ion remover filters the ions 
and forwards them to mass analyzer followed by the detector [32]. On 
the basis of m/z ratio, the fragmented ions are then sorted by the mass 
analyzer. Based on the signals, the detector measures and provides 
data about the quality, characters and abundances of each fragmented 
ions (Figure 1). Few detectors are modified as per the need to give 
spatial information as well for example, multichannel plate. Therefore, 

ionization and detection of ionized fragments in samples seem to be the 
key steps in MS [32]. To clarify the instrumentation in MS, MALDI-
ToF can be considered as example. Non-mass spectrometrists widely 
accept the MALDI-ToF moniker than MALDI or ToF individually. 
Occasionally, "MS" is used as the generic name that denotes a device 
with an extremely definite sector based analyzer and detection system, 
for example in Atomic Mass Spectrometry (AMS). Specific functions 
and applications of MS alert the monikers to refer its broad definition. 
Finally, instrument configurations for the particular moniker of the MS 
become precise. Isotope ratio mass spectrometry (IRMS) is an example 
of such moniker practice. Because restricted mass analyzers are used in 
IRMS which are sector based. Other examples of such MS are thermal 
ionization-mass spectrometry (TIMS), inductively coupled plasma-
mass spectrometry (ICP-MS),  accelerator mass spectrometry (AMS) 
and spark source mass spectrometry (SSMS) [5,32]. 

Resolving and mass determining capabilities of MS in tandem is 
also dependent on the separation technique that integrated with the 
system. Usually  chromatographic  techniques and exceptionally other 
separation techniques are used to separate the sample composite before 
ionization. A familiar assembling is  chromatography (either gas or 
liquid phase) with MS, i.e., GC-MS or LC-MS. As the name indicates in 
GC-MS, a gas chromatographic technique is used to separate different 
components of a mixture before their fragmentation, ionization and 
detection. In simpler term, the mobile phase is a gas in GC-MS. Notably, 
volatile or lipoid substances can be separated by this technique but not 
the proteinaciuos substances. An ion source then ionizes the divided 
components of the sample when their flow is channelized. An ionizer is 
usually a metallic filament to which voltage is applied to emit electros. 
Emitted electrons from the filament ionize the compounds. The ions 
can then further be fragmented to yield a predictable pattern(s) of 
the components. Finally, the unbroken ions or broken fragments are 
flown into the analyzer of the MS to fall on the detector [33]. Instead 
of gas phase in GC-MS, a liquid mobile phase is used in liquid 
chromatographic MS called as LC-MS [5]. As liquid phase, water and 
several organic  solvents are usually used together as a mixture. As a 
source of ionizer, electrospray ionization is usually used. Atmospheric 
pressure chemical ionization,  atmospheric pressure photoionization 
and laser spray are also used as other available LC/MS ion sources [5]. 
When a capillary electrophoresis  liquid separation system in 
incorporated with MS it is referred as Capillary Electrophoresis–Mass 
Spectrometry (CE-MS) [34]. In CE-MS, electrospray ionization process 
is usually used as ionizing source [35]. Drift time is a measure for the 
radius of an ion which is influenced by its charge. In some MS, ions are 
first separated by their drift time under an applied electrical filed. It is 
done before the ions are processed into analyzer and detector units of 
the MS. The job is done with the help of some neutral gases. Such MS 
are referred as Ion Mobility Spectrometry-Mass Spectrometry (IMS/
MS or IMMS) [36]. The advantage of IMS is that it produces data in a 
similar way as that of a LC/MS [37]. So, it becomes easy to analyze the 
data by the workers who are familiar to deal with LC-MS data. Another 
advantage of IMS is the duty cycle of IMS is shorter in comparison to 
liquid or gas chromatography separation processes. So, IMS can be 
coupled to other MS techniques which can results in producing triple 
modalities such as LC/IMS/MS. However, one of the limitations in IMS 
is that longer time is taken by it to analyze a sample than most of the 
MS [38].

Biophysics of screening fragments based on m/z ratio 

Basically two laws govern the dynamics of charged particles in 
electric and magnetic fields in vacuum. One is Lorentz force law in 
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which the force is measured by the equation F=Q(E+vXB) and the 
second is Newton’s second law, i.e., F=ma and this is applicable when 
the ionized molecules move with a velocity less than the velocity of light 
[5,32,39]. Here  “F”  indicates the force provided to ion,  “m”  indicates 
ionic mass,  “a”  indicates the acceleration by with which the ions 
move, “Q” denotes charge of the ion, “E” denotes the applied electric 
field, and “v × B” denotes the cross vector product between the ionic 
velocity and the magnetic field. When both the equations are combined 
it result in (m/q)a=E+vXB and is widely accepted as a classic equation 
for charged particles to measure their movement. So, MS determines 
the particle's motion in space and time based on their m/Q ratio [39]. 
Thus MS can be otherwise referred as "mass-to-charge spectrometers". 
The official language used for the above ratio is m/z, where “z” denotes 
the charges of the elements (e) on the ion, i.e., z=Q/e. Therefore, the 
final value although is unofficially called as m/z ratio, more precisely 
it indicates the ratio between the mass (m) and charge number  (z) 
[5,32,39].

Sample Preparation for MS Studies

As different samples such as proteins, lipids, carbohydrates or purely 
chemical samples needs different ionization techniques, analyzer and 
detector systems, it is noteworthy to mention that preparation of samples 
will differ based on the above mentioned parameters. For example, solid 
samples need to be ionized by filed disposition/plasma disposition/fast 
atom bombardment/MALDI methods. Whereas solution are ionized by 
electrospray, secondary ions, atmospheric pressure chemical ionization 
methods. Similarly, gas samples are ionized by electron ionization, 
photoionization and chemical ionization methods [39]. Based on the 
ionization sources, methods of preparation of samples will vary. For 
example for protein samples, lysate preparation (by lysis using buffered 
detergents, fractionation, depletion, enrichment and dialysis), in 
solution digestion (by reduction, alkylation, enzymatic digestion using 
trypsin and other enzymes), peptide enrichment and cleanup followed 
by MS is done [32]. The lysates can also be separated in 1 D or 2 D gels 
before digestion and enrichment steps. The object here is to clean the 
unwanted fractions from the sample to increase the robustness of the 
data. Chemical samples can directly fed into GC if is in one solvent 
but with proper dilution [5,32]. For metabolomics studies, volatization, 
solid phase extraction, liquid-liquid extraction and direct injection are 
few methods of sample preparation [40]. 

Ionization and detection of samples using various MS 
methods

The process of ionization will be better understood in MS systems 
with an example. NaCl if needs to be analysed, it is vaporized first, and 
ionized as Na+ and Cl− ions. Sodium atoms have atomic mass of 23 amu 
and its ions are  mono-isotopic, i.e., it has no isotopic form in NaCl. 
However, Cl atoms are di-isotopic having atomic masses of ~ 35 amu 
and ~ 37 amu. Under both electric and magnetic fields of the analyzer of 
MS, the ions travel. The speed of a charged particle is controlled when it 
moves through an electric field, and the magnetic field possibly governs 
its direction of movement. The degree of movement and deflection 
from its path of the moving ion therefore are altered based on its m/z 
ratio. Magnetic force deflects the lighter ions more than heavier ions 
(governed by Newton's second law of motion, F=ma) [39]. As a result, 
moving ions from a mixture can be sorted due to their different speed 
and degree of deflection which are dependent on their m/z ratio. The 
flows of the ions that are sorted as described above are then reached 
on the detector from analyzer. Since, each ions for example ions of 
Na and Cl along with its isotopic form will have different pattern of 

speed and deflection on the basis of their different m/z ratio, different 
respective mass spectrograph are recorded which again correlate with 
their relative abundances. Such fundamental or raw data are analyzed 
to establish element composition and the chemical nature of samples, 
for example Na and Cl in the present case. That means the amount of 
both Na and Cl along with the isotopic forms of Cl, i.e., 35Cl to  37Cl 
ratio in a sample can be quantified. Gases and vapors are ionized using 
electron ionization (EI) and chemical ionization (CI) methods. In the 
later case, the analyte is ionized by chemical ion-molecule reactions 
during its collisions with the ion source. Similarly, for ionization of 
liquid and solid biological samples, two techniques such as electrospray 
ionization and MALDI are used [41,42]. 

Advantages and disadvantages of ionization processes

Each ionization process has its own advantages and limitations. For 
example, EI process fragments the sample with higher rate degree as a 
result it yields highly detailed mass spectra (Figure 2). These spectra can 
be skillfully analysed to obtain important information for structural 
elucidation/characterization. Finally, from the data, detection of 
unidentified compounds can be done by comparing to libraries such 
as Mascot in matrixscience.com that store mass spectral data of various 
compounds and elements. On the other hand, electron ionization 
is used primarily in GC-MS, where the whole system is run under 
high vacuum. However, this method of ionization is incompatible to 
combine with instruments such as HPLC, i.e., LC-MS, because under 
normal atmospheric pressure, the filaments used to produce electrons 
burn out quickly. To avoid such limitations, hard ionization techniques 
are employed. In hard ionization techniques, high quantities of residual 
energy are imparted that results in fragmenting the sample at higher 
rate. The reason attributed for the above is, excess energy ruptures 
chemical bonds orderly so that it restores the constancy of the produced 
ion(s). The produced ions tend to have lower m/z ratio in comparison to 
their respective molecular masses at original condition. In contrast, soft 
ionization process imparts very less residual energy on the sample and 
it therefore result in less fragmentation rate of the compounds present 
in sample. Fast atom bombardment, chemical ionization, atmospheric-
pressure chemical ionization,  electrospray ionization and  matrix-
assisted laser desorption/ionization is few examples of soft ionization 
techniques [39]. Among the other ionization techniques, field 
desorption  (FD),  fast atom bombardment  (FAB),  photoionization, 
inductively coupled plasma,  glow discharge, thermospray, 
desorption/ionization on silicon  (DIOS),  direct analysis in 
real time  (DART),  atmospheric pressure chemical ionization 
(APCI),  secondary ion mass spectrometry  (SIMS),  spark 
ionization and thermal ionization (TIMS) are also being used in various 
MS as per the requirement(s) [43]. Nevertheless, for proteinmics MS 

Figure 2: Mass spectrograph of a fragmented protein.

Figure 2: Mass spectrograph of a fragmented protein.

http://dx.doi.org/10.4172/2379-1764.1000182
http://dx.doi.org/10.4172/2379-1764.1000182


Citation: Paital B (2016) Mass Spectrophotometry: An Advanced Technique in Biomedical Sciences. Adv Tech Biol Med 4: 182. doi: 10.4172/2379-
1764.1000182

Page 5 of 8

Volume 4 • Issue 3 • 1000182
Adv Tech Biol Med
ISSN: 2379-1764 ATBM, an open access journal

combined with electrospray ionization (ESI) and matrix-assisted laser 
desorption/ionization (MALDI) and for metabolomics 

Types of MS Based on Mass Analyzers and their Limitations

Based on requirements, several types of mass analyzers are used in 
MS. Although, different MS that uses static or dynamic fields magnetic 
or electric fields has different mode of actions, all follow the typical 
equation “(m/q)a=E+vXB” [5,32,39]. Many MS use two or multiple 
analyzers for  tandem measurements (MS/MS). Practically  “mass 
resolving power”  is the criterion to assess the ability to discriminate 
multiple or at least two peaks with a little dissimilar m/z ratio values. 
The mass accurateness is calculated by dividing the  m/z  value error 
to the correct m/z ratio. The value obtained in such calculations is 
generally calculated in milli mass units or parts per million units. The 
range of mass to calculate m/z should be within the limit of the analyzer. 
The “linear dynamic range” is measured over the range of the linear 
signal given by the ions and quantity of analyte. Speed of measurement 
is determined by the time taken by a MS to produce the number(s) of 
spectra per s/min/h [5,32,39].

Sector field mass analyzer is another one in which the pathway 
and/or speed, more accurately the velocity of the charged particles or 
fragmented ions are measured under an electric, magnetic or both 
under electric and magnetic field(s). Such analyzer is used to analyze a 
limited range of m/z ratio or to examine within a range of m/z ratio that 
can enlist the ions present in the sample [44]. Different ionized particles 
have different charges and hence they bear different but fixed kinetic 
energies because velocities of each ion will be as per their  masses. 
Therefore, the detector will obtain the lighter ions first as they will reach 
faster than the heavier one. The time taken by the particles to hit the 
detector often is called as “the  time-of-flight” and such analyzers are 
named accordingly as time-of-flight (TOF) analyzers. The principle is 
that under the same electric potential, different ions are accelerated to 
hit the detector at different time based on their m/z value. And hence 
the time to hit the detector is different for different ions which become 
the unit of measurement [45]. 

Another MS analyzer called as quadrupole mass analyzers that use 
oscillating electrical fields to categorically influence the path of ions. 
The applied electric field either stabilizes or destabilizes the path of 
ions travelling under a  radio frequency  quadrupole  field. The  radio 
frequency quadrupole field is usually created among 4 rods arranged 
parallel to each other. Such analyzers allow only the ions within 
limited range of m/z ratio via it at any particular time point [46]. 
Subsequently, when the potentials in the quadrupole  rods changes, 
it allows fragmented ions within suitable range of m/z ratio values to 
be moved or cleared rapidly each time. The movements can be either 
of continuous or in a sequence of separate trips [47,48].  Following 
the identical techniques and rules as the quadrupole mass analyzer, 
another quadrupole ion trap  is developed in which ions are trapped 
and directed to eject in sequences. Ions are trapped generally under 
quadrupole field i.e. within a space confined by the ring electrode that 
present between two endcap electrodes. The later electrodes are usually 
connected to direct current or auxiliary alternative current potentials. 
The fragmented samples are ionized inside by a beam of electron or 
laser, or are ionized on the outside. Then the ions are directed via a 
slit present in the endcap electrode. Resonance excitation technique 
is also used to direct to eject ions in which the endcap electrodes are 
supplied with an additional oscillatory excitation voltage. The varied 
magnitude of the entrapping voltage along with or alone the frequency 
of the excitation voltage brings ions into a resonance condition for 
separation based on their m/z ratio [49,50]. Quadrupole ion trap is 

further modified at the electrode level. The electrodes are designed in 
the form of flat rings instead of hyperbolic shaped electrodes. Such MS 
are called as cylindrical ion trap MS. As a result, the dimension of a 
trapping area is reduced and the shape of the electric field is occupied 
close to the core of the trapping area [51]. Similar to a quadrupole ion 
trap, a linear quadrupole ion trap is also made. Such device traps ions 
in second dimension also inside the quadrupole field rather in third 
dimension quadrupole field [52]. 

A special MS that detects the mass of the fragmented ions by 
detecting the current image generated by ions cyclotroning movement 
under a magnetic field is called as fourier transform mass spectrometry 
or fourier transform ion cyclotron resonance MS. Instead of detecting 
the deflection of fragmented ions with a detector such as an electron 
multiplier, the ions are ejected into a stationary electric/magnetic ion 
trap. Finally, they effectively become the part of a complete circuit. 
Detectors positioned in space detect the electrical signal of such ions 
which pass close to them over time. Finally, it generates a periodic 
signal. The frequency of cycling of an ion is measured by its m/z 
value. The periodic obtained signal thus can be deconvoluted by doing 
a  fourier transform.  In this system, each ion is taken into account 
for counting multiple times. Therefore, high sensitivity with greatly 
superior  resolution  is obtained in data. As a result, high precision is 
another plus point in such machines [53,54]. Ion cyclotron resonance is 
another older mass analysis method which is similar to the above MS 
technique. In such machines, ions are measured with a conventional 
detector system. Ions are trapped under a static electric/magnetic ion 
trapping system and then are excited until they collide on the wall of the 
detector. Based on the impact time of ions of different mass, the samples 
are resolved and detected [55].

Similar to  Fourier transform ion cyclotron resonance  mass 
spectrometers, Orbitrap  MS are developed. In such MS, ions are 
trapped under a static electric field. Hey are trapped electrostatically in 
an orbit around a central, spindle shaped electrode. The ions confined 
by the electrodes so that they can orbit around the central electrode and 
oscillate back and forth along the long axis of the central electrodes. 
This frequent oscillation is m/z ratio dependent of ions and produces 
an  image current  on the detector which is finally recorded. The 
advantages of such MS are providing high mass accuracy of ions, high 
sensitivity and a good dynamic range to trap ions [56]. 

Finally, in all above types of instruments, the detector winds up the 
work by capturing the properties (as discussed in above techniques) of 
ions those are basically dependent on their unique m/z ratio. Normally, 
various types of  electron multiplier  are utilized nevertheless other 
detectors including  Faraday cups  and  ion-to-photon detectors  are 
also chosen in several MS devises. Many times, the number of ions 
those leave the mass analyzer to detector at a particular time point 
is rather normally less. Therefore, substantial magnification of the 
signal imparted by the ions is regularly essential to obtain recordable 
signal. Microchannel plate detectors are generally used in contemporary 
marketable MS devices to avoid such issues [57]. 

Tandem MS

One limitation in the MS that are discussed above is that all the 
machines are capable to read the entire sample once per time. Means 
all the machines have only one mass analyzer. Owing to remove 
this limitation tandem MS was developed. A  tandem MS  is capable 
of reading samples multiple rounds that are generally separated 
after fragmentation [29]. For example, he first mass analyzer can 
separate one  peptide  out of many injected into the MS machine and 
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a second mass analyzer stabilizes the separated peptide ions next to 
the first when they hit a gas make them to parts by collision-induced 
dissociation processes. The third mass analyzer fitted with the MS 
then sorts the fragments produced from the peptide. Tandem MS is 
also done in a single mass analyzer a different time points as seen in a 
quadrupole ion trap [51]. The central application of tandem MS is for 
protein identification and quantization under different experimental 
conditions. One more kind of tandem MS utilized for  radiocarbon 
dating is accelerator MS that uses very high voltages. The range of he 
voltage used by such MS devices are usually in the mega-volt range 
to accelerate negative ions for the tandem MS. Various methods are 
used to  fragment  molecules for tandem MS. For example  collision-
induced dissociation,  electron capture dissociation,  electron transfer 
dissociation,  infrared multiphoton dissociation,  blackbody infrared 
radiative dissociation,  electron-detachment dissociation and  surface-
induced dissociation [58]. 

Data analysis of MS spectra

The most common type of data researchers look for is mass 
spectrum with peak values (Figure 2). Particular kinds of MS data 
are best presented as a mass chromatogram. For example, in selected 
ion monitoring, total ion current and  selected reaction monitoring 
[59]. Three-dimensional  contour map is another form of MS data in 
which m/z  ratio are presented on the  x-axis, intensity on the  y-axis, 
and any other experimental parameters, such as time, is represented 
on the  z-axis. However, general categorizations of data are primarily 
done in order to understand every MS data [59]. The key factor is 
to determine whether the charge of the obtained ions, i.e., either 
positively or negatively charged. This is because any MS can work in 
either  in negative ion mode  or  in positive ion mode. It is therefore 
more vital in determining the neutral mass of the fragments because 
it implies somewhat regarding the nature of the elements. Several 
kinds of ion sources result in diverged arrays of ionized fragments. An 
electron ionization source generates a lot of fragments and typically 
single-charged (-1) radicals (with odd charge numbers), whereas an 
electrospray source generally generates non-radical quasimolecular 
ions that are often with multiply charged condition [60]. Purposely, 
parts of fragmented ions post-source is produced by tandem MS and 
therefore. It can considerably modulate the type of data obtained in any 
research. Prior to data analysis, information on the source of a sample 
can offer insight into its constituent molecules and their possible 
fragmentation products. Simply, plant/animal/synthetic/industrial 
sample will have their unique and expected molecular fragmentation 
pattern. Some variation may also be obtained based on sample 
preparation and running processes and how the sample is introduced. 
For example, data can vary depending on which matrix is used for 
MALDI spotting, since a lot of the energetics of desorption/ionization 
incidents are controlled by the matrix rather than the laser power [61]. 
Occasionally, samples are spiked with sodium or any other ion-carrying 
element to create adducts instead of a protonated kind of ions. Further 
different experimental procedures are also required if the objective(s) 
is to measure molar mass, molecular structure, sample purity and 
successful interpretation [62]. Primary approach to distinguish 
and identify an unfamiliar or unknown complex from its raw data 
pattern is to compare it against a known library. The same procedure 
is followed for analysis of MS spectra. Without similar matches from 
the search results, manual and/or software assisted interpretation 
method is followed  for  interpretation of MS spectra [63]. In silico 
simulation is done as the key tool for assigning chemical makeup or 
sequence of peptides. Such simulation is commonly supported by a 

fragmentation data bank that has known patterns of decomposition 
reactions [64]. Mass-to-charge ratio values can symbolize huge amount 
of supposedly ion structures. However, more accurate mass figures 
considerably decrease the number of actual  molecular formulas. An 
in silico algorithm called “formula generator” calculates all molecular 
formulae that theoretically fit a given  mass  with particular tolerance 
[65]. Precursor ion fingerprinting is one of the most recent techniques 
for structure elucidation in MS. In this method, identification of 
individual pieces of structural information is possible. It can be 
done by investigating the  tandem MS spectra  of the molecule under 
examination with a library of the  product-ion spectra  of structurally 
known precursor ions [66]. 

Softwares Used for MS Data Analyses
For data acquisition, analyses, representation, different web based 

online servers or offline softwares are used in mass spectrometry. For 
example, for protein metrics Byonic, mascot, massMatrix, ProteinPilot 
Software, Protein Prospector, RAId, SEQUEST, SIMS (for post 
translational modification studies), SimTandem, SQID, X!Tandem, for 
genomics and MassWiz, for MS/MS peptide quantification MarkerView 
Software, MassChroQ, MaxQuant, MultiQuant Software, OpenMS, 
Spectronaut and SWATH Software 2.0, for computational analysis 
Grelag, InsPec T, MyriMatch, pFind, for biotechnological information 
OMSSA, for de novo sequencing Phenyx, CycloBranch, DeNovoX, 
DeNoS, Lutefisk, Novor and PEAKS and for Homology searching 
MS-Homology and SPIDER are frequently used. Similarly few other 
softwares such as Advanced Chemistry Development, Analyst, 
AnalyzerPro, Chromeleon, LabSolutions LCMS, Mass++, MassBank.jp, 
MassBank.eu, MassBank, Mass Frontier, MassLynx and massXpert are 
also used in MS studies. 

Conclusion
As stated in the beginning of this article, increased sensitivity in 

comparison to available analytical techniques with efficient analyzer, m/z 
filtering, reduced background interference, measuring retention time 
and ToF properties of elements, excellent specificity from characteristic 
fragmentation patterns to discover unknowns or verify the existence of 
assumed complexes, information about molecular weight and isotopic 
abundance of elements and temporally resolved chemical data made 
this technique worldwide adorable [5,32,39]. MS data can be used 
for both  qualitative  and  quantitative  analyses of physical, chemical, 
and biological properties of samples. Objectives such as identifying 
unknown compounds, determining the  isotopic  composition of 
elements in a molecule or mixture, determining the  structure  of a 
compound, quantification of different known/unknown components 
of sample under different experimental conditions and ascertaining 
the sequences of proteins can be fulfilled by observing MS spectrum of 
fragmented samples. Although this technique has its own advantages in 
bio-medical sciences, the technique has also some drawbacks especially 
in chemical analyses. Its scope is limited in identifying hydrocarbons 
that produce similar fragmented ions. It also fails to distinguish between 
optical and geometrical isomers and the positions of functional groups 
in ortho, meta and para positions in an aromatic ring. However, it has 
still lists of its own advantages in biomedical, chemical and geological 
sciences. 
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