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ABSTRACT
The interaction between various COVID-19 vaccines and our immune system's response to mediate protection   or 
susceptibility to SARS-CoV-2 is in the very initial stages of understanding. Hundreds of 2019 Corona virus disease 
targeting vaccines are currently in progress, but success is unknown. Most of the vaccine candidates use a protein-
based subunit (spike protein-based vaccine)-so, instead of using a complete pathogenic virus, they are built on a small 
component of it, such as a protein found in its outer shell. That protein is administered to patients in a high dose, 
with the aim of inducing a fast and strong reaction by the human immune system. Spike protein-based vaccines 
were granted emergency approval within a limited period of time and are now being rolled out. This type of vaccine 
provides our cells with signals to express a component of what is called the “COVID-19 spike protein.” Here, we 
use existing and emerging evidence to propose a testable hypothesis that Spike protein-based vaccines may initiate 
blood clots as the same as the action of COVID-19 spike protein  by the strong  interaction between Angiotensin-
converting enzyme 2 (ACE2) expressed on platelets and the receptor binding domain of the spike protein generated 
by vaccination leading to   initiating autoantibodies to platelets that mistakenly react and target human platelets 
leading to serious complication presented in platelet aggregation and blood clots. 
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INTRODUCTION

  In addition to generating autoantibodies and memory  T cells 
to ACE2 expressed on the epithelial cells in lungs and resulted 
in an auto-immune response to Angiotensin-converting enzyme 
2 (ACE2). These autoantibodies may generated by enforced 
presentation of the Angiotensin-converting enzyme 2 (ACE2) 
protein in a complex with vaccine Spike protein in fragment 
crystallizable (FC) Receptor positive Antigen Presenting Cells in 
the lung. The development of autoantibodies might make injury 
and damage to the host epithelial cells and hamper their ACE2 
dependent function in lungs, intestine and testes which express 
ACE2. In addition to inducing platelet aggregation, furthermore 
the efficacy and safety of various COVID-19 vaccines like spike 
protein based vaccine and life attenuated vaccine can be hampered 
by several factors like the Antibody Dependent Enhancement 
process (ADE). ADE is a phenomenon in which antiviral 
antibodies help target immune cells to become virally infected. We 

reported studies with up to date literature guidance to indicate that 
therapeutic molecules that potentially inhibit and downregulate 
ACE2 may be an effective treatment and promising adjuvant option 
for effective spike protein based vaccine of SARS-CoV-2 owing to 
their ability to reduce the risk of autoantibodies generation to 
ACE2 by downregulating the expression of ACE2 receptors to 
be less prone to attachment of spike protein based vaccine and 
immune system presentation. Noteworthy mentioning that a 
phase II clinical trial will be started soon to assess The longterm 
side effects of spike protein based vaccine in the era of  COVID-19 
(ClinicalTrials.gov Identifier: NCT04730895; First posted: January 
29, 2021). The spike protein of COVID-19 attaches atrongly and 
directly with the host cell surface Angiotensin-converting enzyme 
2 (ACE2) facilitating virus cell entry and replication [1-7]. Further 
investigations also suggested that COVID-19 more effectively 
recognizes and binds human ACE2 receptors than SARS-CoV, 
increasing COVID-19's ability to transmit among humans [8,9]. 



2

Elkazzaz M, et al. OPEN ACCESS Freely available online

J Clin Trials, Vol. 12 Iss. 3 No: 1000503 PreQC-22

Upregulation in the expression of human ACE2 induced disease 
severity and lethality in a mouse model of SARS-CoV infection, 
suggesting that virus entry into host cells is a potential and 
critical step [10,11]. Among all SARS-CoV structural proteins, the 
primary antigenic component responsible for inducing protecting 
immunity, host immune responses, and/or neutralizing antibodies 
to viral infection it is an expressed protein called Spike protein. 
Unfortunately, it is a possible that  receiving spike protein based 
Vaccine may act the same action of COVID-19 spike protein and 
increase the risk of autoimmunity to cellular ACE2 by generating 
anti-ACE2 antibodies that target ACE2 receptors  expressed in lungs 
and found  on the surface of  platelets leading to inflammation 
and damage  of those sites in addition to inducing human platelets 
activation and aggregation leading to blood clots as a study showed 
that viral Spike protein potentially and dose-dependently induces 
platelet activation and aggregation a serious complication which 
may lead to blood clots  [12]. Several  studies demonstrated that 
anti-ACE2 antibodies (autoimmune response) may generated 
thorough compulsory presentation of the Angiotensin-converting 
enzyme 2 (ACE2) protein in a complex with vaccine spike protein 
in fragment crystallizable (FC) Receptor positive antigen presenting 
cells in the lung [13,14]. A COVID-19 infection is followed by 
inflammatory pneumonia in approximately~14% of patients [15], 
and damage and injury of organ [16]. With certain predisposing 
conditions, the risk increases and also increases with age. High 
blood pressure of 6.3% highlights the risk of death among these, 
[17] by attaching to the ACE2 protein, COVID-19 enters cells. In 
hypertensive patients, angiotensin-converting enzyme 2 (ACE2) 
expression may be upregilated and this could improve virus 
uptake into cells that express ACE2 in the heart, blood vessels 
kidneys and, lungs [18]. There is no known pathological scientific 
role for the onset and occurrence of inflammatory pneumonia 
after clearance of viral infection and initial recovery. A similar 
pneumonia with inflammation linked with SARS vaccination 
(Severe Acute Respiratory Syndrome) or renewed exposure was 
expected to be due to T lymphocyte Hypergrowth [19,20], and It 
could be transferred by SARS-Specific Antibodies Spike protein 
in a Non-Human Primate (NHP) model [21]. Vaccine donation 
with full-length spike protein predisposed to the inflammatory 
pulmonary disease complication in multiple animal models [19]. 
Pneumonia resulting in pulmonary inflammation was associated 
with an early high titer neutralizing antibody response in patients 
with COVID-19 for Severe Acute Respiratory Syndrome (SARS) 
[22], and higher antibody titers are also associated with severe 
Covid-19 inflammatory disease [23]. In pathogenesis, the function 
of antibodies may be concentrate the Spike protein in fragment 
crystallizable (Fc) Receptor found on surface of antigen presenting 
cells in the lung. But why such a destructive and damaging immune 
response is initiated by the Spike protein (SP) is not clarified. The 
specificity of the lung-damaging T lymphocyte is also not clarified. 

METHODS

Our hypothesis 

The strong interaction between Angiotensin-converting enzyme 2 
(ACE2) and the Receptor Binding Domain (RBD) of the Spike 
protein (SP) of COVID-19 is with affinity (~10 nM), and this 
binding affinity is equivalent to many monoclonal antibodies 
(MAbs) [17]. The same binding affinity and strong interaction are 
expected to be found between ACE2 receptors and the Receptor 
Binding Domain of the Spike protein based vaccine.  As such, 
association of Angiotensin-converting enzyme 2 (ACE2) with the 

binding domain of  the Spike protein is likely to be strong and  
long lived interaction, and is expected to result in Angiotensin-
converting enzyme 2 (ACE2) entering antigen presenting cells 
associated with the Spike protein produced by  vaccine or the 
Spike protein  found on the surface of COVID-19. This may be 
enhanced by fragment crystallizable (Fc) mediated uptake via 
fragment crystallizable (Fc) Receptors once an antibody response 
to the spike has occurred, and may set up conditions for extreme 
presentation of Angiotensin-converting enzyme 2 (ACE2) epitopes 
to B and T cells, aided by strong T cells help from epitopes 
derived from Spike protein attachment or other viral expressed 
proteins. ACE2 expression in heart, kidney and lung would lead 
to inflammatory action at those sites. Furthermore, loss the activity 
of respiratory  ACE2 may be connected with increased activity of 
angiotensin 2 via the AT2 type I receptors in the lung, that are 
thought to be involved in initiating inflammatory response and its 
complication [24]. Autoantibodies to ACE2 have been showed [25] 
linked with vasculopathies including respiratory hypertension. The 
role of antibodies in pathogenesis may be to concentrate the Spike 
protein in fragment crystallizable (Fc) Receptor found on surface 
of Antigen Presenting Cells in the lung. Therefore, we believe that 
spike protein based vaccine may potentially bind to the elevated 
levels of the soluble enzyme ACE2 and it is very possible that 
generated antibodies will target the human angiotensin converting 
enzyme 2 receptors. Therefore we hypothesize that vaccines based 
on the spike protein might initiate Autoantibodies and T cells to 
ACE2. The development of autoantibodies to ACE2 might make 
damage to the host epithelial cell in lungs and the other different 
organs which express ACE2. This pattern of lung injury also 
occurs in Pulmonary Hypertension secondary to Scleroderma with 
elevated levels of anti ACE2 antibodies [26,27]. These autoimmune 
process may also explain why myocarditis and other forms of 
inflammatory responses show up weeks or months after a patient 
has ostensibly recovered from COVID-19 infection. In addition, 
we assume that any medication that upregulats ACE2 as ACE2 
blocker in case of diabetic and hypertensive patients may increase 
the risk of autoantibodies in the event of receiving of spike protein 
based vaccine as showed in Figure 1. The COVID-19 vaccine 
may be altered each year to counter changes to circulating strains 
Therefore, with vaccination; the potential risk of cellular ACE2 
damage by autoantibodies developed by the COVID-19 vaccine 
could be increased.

Figure 1: Autoantibodies generated by antigenic presentation of 
soluble ACE2 or cellular ACE2 cmbined with spike protein based 
vaccine or COVID-19 spike protein.  
Note: Where autoantibodies target cellular ACE2 and isotretinoin 
binds to ACE2 receptors leading to its genetic expression down 
regulation, preventing autoantibodies formation and spike protein-
ACE2 attachment.   
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dangerously high levels of blood clotting [38]. Indeed, of the very 
first 99 patients hospitalized in Wuhan, China, 36% presented 
with elevated blood levels of the so-called D-dimer, a dimeric 
fragment of fibrin that is the most widely used diagnostic blood 
marker of recent and/or ongoing coagulopathy [39]. Thrombin 
is an important and key enzyme in hemostasis and thrombosis, 
regulating pro-and anticoagulant reactions by interacting with 
other receptors and coagulation proteins [40]. Thrombin is linked 
to other complex biological processes such as inflammation [41]. 
A study reported that RA is found to possess in-vitro anti-platelet, 
anti-inflammatory, and fibrinolytic prosperities. In this study they 
have tested the in-vitro thrombin inhibitory and platelet aggregation 
activities of vit A and its derivatives. Retinaldehyde, retinoic acid, 
and retinol showed potent inhibitory effect on thrombin, Retinoic 
acid showed the highest inhibition of both the forms of thrombin. 
Vitamin A and its derivatives retinaldehyde, retinoic acid, and 
retinol also displayed remarkable inhibition of platelet aggregation. 
This is the first report of vitamin A and its derivatives showing 
inhibition of thrombin and platelet aggregation in-vitro [42]. Co-
incubation with 13-cis-RA and IL-1 α resulted in a synergic increase 
in the release of Prostacyclin Synthase (PGI2) [43]. PGI is a powerful 
vasodilator that inhibits platelet aggregation through activation 
of adenylate cyclase. Consistently [44], 13-cis-RA increased the 
ability of HUVEC to inhibit Arachidonic acid-induced platelet 
aggregation. 

13 cis retinoic acid could be an effective treatment and spike 
protein based vaccine adjuvant by   decreasing the risk of 
autoantibodies generation to ACE2: A large  study  analyzed 
a broad set of 672 clinically approved drugs  for treatment in 
cell lines demonstrated that isotretinoin was the potent and 
strongest downregulator of Angiotensin-converting enzyme 2 
(ACE2) receptors [45] and further, studies reported that it may 
prevent the cellular entry of SARS‐CoV‐2 and can be a taken 
as a targeted therapy in COVID-19 [46-48]. therefore, we suggest 
iotretinoin treatment and co administration of isotretinoin as 
adjuvant vaccine with spike protein based vaccine will reduce the 
expected risk of platelet aggregation and blood clots  via blocking 
ACE2 receptors, Furthermore,  its ability to induce  mucosal 
IgA antibodies that are  less prone to ADE phenomenon and 
responsible for   passive mucosal immunity in the respiratory tract. 
Furthermore, in addition its impact on Memory T cells, CD4+/
CD8+ ratio, Neutrophil Chetnotaxis, Interferon Type1, Thrombin, 
Transmembrane serine protease 2 (TMPRSS2), toll-like receptor 3 
(TLR3), mitochondrial antiviral-signaling protein (MAVS), papain‐
like protease (PLpro), and Interleukin 6 (Il-6).  The primary isomers 
of RA formed In-vivo are 9-cis-retinoic acid (9cRA) and All-trans-
Retinoic Acid (atRA) and; each binds separate RA receptor types, 
thus acting upon a select subset of genes [49]. 13cRA is a synthetic 
form that may function similar to the other produced isoforms, or 
by isomerization to atRA and 9cRA. Although the exact mechanism 
of action is unclear; in other words, Therefore, we hypothesize that 
isotretinoin binds directly to ACE2 receptors and contributes to 
their expression downregulation by blocking the binding capacity 
of ACE2 and this mechanism may lead to blocking the binding of 
spike protein based vaccine or COVID-19 to cellular and soluble 
ace2 receptors as showed in Figure 1.  

13 cis retinoic acid could be effective treatment better than 
more re-purposed drugs against COVID-19: 13 cis retinoic acid 
increased CD4 cells and markedly inhibited viremia in HIV (highly 
mutated virus) positive patients suffering from acne vulgaris [50]. 
Males infected with COVID-19 have higher rates of mortality 

The most serious consequences of our hypothesis

Since December 2019, the COVID-19 pandemic worldwide has 
become a severe public health crisis [28]. A variety of important 
cardiovascular complications have been associated with COVID-19 
[12]  and even people without a history of cardiovascular disease 
are at risk of cardiovascular complications [29]. Thrombotic 
disorders, sepsis, and disseminated intravascular coagulation (DIC) 
are usually encountered in patients with extreme COVID-19 and 
these conditions have been closely related to higher mortality rates 
[30,31]. Large-scale trials found that 18.8% to 36.2% of patients 
[32,33] present with thrombocytopenia on admission. In addition, 
the total incidence of thrombotic complications was 31% for 
COVID-19 patients in the ICU, while thrombotic complications 
were encountered by just 1.3% of non-COVID-19 ICU patients 
experience thrombotic complications [34]. Although the evidence 
supports a link between COVID-19 and the development of 
a hypercoagulable state, the underlying mechanisms for this 
association remain elusive  A large recent  study conducted on  
201 healthy volunteers and 589 patients suspected of having 
COVID-19 found that there is a  relationship among  COVID-19 
spike protein, ACE2 expressed on platelets, the platelet hyper 
activation and coagulation parameters in COVID-19 patients [35]. 
In addition this study found that human platelets exhibit robust 
expression of ACE2 at both the RNA and protein levels as detected 
by RT-PCR [138] [36]. Moreover, it found that SARS-CoV-2 
Spike protein directly and dose-dependently potentiates platelet 
activation, enhanced platelet aggregation and ATP release. These 
data indicate that S1, but not S2, binds ACE2 to regulate platelet 
function, which corroborates the finding that the receptor-binding 
domain (RBD) of the spike protein is found in the S1 subunit [17]. 
After incubation with Spike or S1 protein, platelets also displayed 
markedly accelerated spreading and clot retraction. The effect of 
COVID-19 spike protein on platelet function could be explained 
by The strong interaction between Angiotensin-converting enzyme 
2 (ACE2)  expressed on platelets and the Receptor Binding Domain 
(RBD) of the Spike protein (SP) of COVID-19  is  with  affinity (~10 
nM),  and this  binding affinity is equivalent to many monoclonal 
antibodies (MAbs). Furthermore, attaching COVID-19 spike 
protein to ACE2 receptor on platelet could induce autoantibodies 
against human platelets and cause blood clot    and this could 
explain Continuous thrombocytopenia after SARS-CoV-2 nucleic 
acid negative in a non-severe COVID-19 patient for several months 
[37]. Could spike protein dependent vaccine cause thrombosis in 
vaccine candidates? The critical issue listed here, we assume that 
the Spike protein-based vaccine may induce platelet activation 
pathways through the induction of autoantibodies against human 
platelets and strong interaction with ACE2 on human platelets 
because vaccination against corona virus is an important and focal 
point to eliminate the virus and limit its spread. Here, we must 
look for a means that can reduce the incidence of autoantibodies 
to ACE2 and improve the efficacy of COVID-19 vaccine which is 
represented in molecules that could inhibit ACE2 potentially and 
making these receptors less prone to spike protein attachment of 
both COVID-19 and spike protein based vaccine. 

RESULTS AND DISCUSSION

Suitable treatment according to our hypothesis

13 cis retinoic acid could be an effective treatment and spike 
protein based vaccine adjuvant by inhibiting both platelet 
aggregation and thrombin: More than one-third of patients 
seriously ill with COVID-19 worldwide are afflicted with 
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and  hospitalization than females [51] and among severe cases of 
disease, males have more severe lymphopenia [52]. There may also 
be a bias to effective and stronger CD4+ and CD8+ T cell activation 
in females with COVID-19 [53]. In addition administration of 13 
cis retinoic acid improved CD4+/CD8+ ratio in advanced ovarian 
cancer [54,55]. Furthermore, retenoids (13 cis retinoic acid) 
inhibited Epstein-Barr virus related lymphoproliferative disorders of 
immunosuppressed patients [56].  In addition retinoic acid induces 
homing of protective T and B cells to the gut after subcutaneous 
immunization in mice [57]. Moreover, the high neutrophil to 
lymphocyte ratio observed in critically ill patients infected with 
COVID-19 is associated with excessive levels of reactive oxygen 
species (ROS), which promote a cascade of biological events that 
drive pathological host responses. ROS induce tissue damage, 
thrombosis and red blood cell dysfunction, which contribute 
to COVID-19 disease severity [26,58]. Isotretinoin produces 
significant inhibition of neutrophil chetnotaxis and monocyte and 
In-vivo patients with cystic acne [59]. In addition, 13 cis retinoic 
acid have more therapeutic features which may make it promising 
treatment against COVID-19. A recent study demonstrated that 
HDL-scavenger receptor B type 1 (SR-B1) facilitates SARS-CoV-2 
entry [19]. SR-B1 is coexpressed with angiotensin-converting 
enzyme 2 (ACE2) in multiple extrapulmonary tissues including 
testis and the retina. The existing expression profiles of ACE2 and 
SR-B1 also show their coexpression in multiple metabolic organs 
[60-65] which could indicate an enhanced degree of trophism for 
extrapulmonary tissues, thereby contributing to the multiple-organ 
pathologies of COVID-19 [66-70]. Retinoic acid-induced down-
regulation of HDL-scavenger receptor B type 1 (SR-B1) via retinoic 
acid receptors induced expression of the intestinal transcription 
factor (ISX). ISX then inhibited the expression of SR-B1 [71]. 
Furthermore, a study demonstrated that isotretinoin is a potential 
repressor and inhibitor of papain‐like protease (PLpro), which 
is a lethal protein, expressed by COVID-19 genes [72] and is a 
deubiquitinating enzyme, which facilitates and induces the host 
cell ubiquitination process to the advantage of COVID-19 [73]. 
Interleukin-6 (IL-6) is one of the main mediators of inflammatory 
and immune response initiated by COVID-19 infection or injury 
and increased levels of Interleukin-6 are found in more than one 
half of patients with COVID-19 [74-77]. Levels of Interleukin-6 seem 
to be associated with respiratory failure, inflammatory response, 
needing for mechanical ventilation and mortality in patients with 
COVID-19 [78,79]. Many studies found that 13 cis retinoic acid 
is an effective treatment for inhibition of IL-6 [80-84]. Therefore, 
we first hypothesized in our large clinical trial (ClinicalTrials.gov; 
NCT04353180) conducted on 1000 patients with COVID-19 
that 13 cis retinoic acid (isotretinoin) may be potential treatment 
for il-6 inhibition in case of COVID-19 and what confirms our 
hypothesis is that a large study published in nature after our clinical 
trial demonstrated that depletion of retinoic acid causes excessive 
cytokine release, is called “retinoic acid depletion syndrome.” 
COVID-19 and previously defined sepsis, SIRS and ARDS are each 
retinoic acid depletion syndrome [85]. Various studies demonstrated 
that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry 
and the serine protease TMPRSS2 for S protein priming [86-91]. In 
COVID-19, it has been hypothesized that higher androgen levels 
and hence sustained the serine protease TMPRSS2 expression 
among men might explain their predominance in numbers of 
deaths from the disease versus women [92-96]. The serine protease 
TMPRSS2 expression is androgen-regulated TMPRSS2 gene as in 
Figure 2 [97-99].

Isotretinoin alone can decrease androgen levels via attenuating 
its effect  [60-62] Moreover, we hypothesize that any drug which 
downregulates the serine protease TMPRSS2 expression through 
targeting Androgenic receptors (AR), Androgenic receptors(AR) 
co-regulatory factors, or Androgenic receptors (AR) transcription 
factors might be clinically effective for investigation against 
COVID-19 and is worth investigating under a clinical trial. 
Noteworthy mentioning that a phase III clinical trial will be started 
soon to assess the efficacy of isotretinoin (13-cis-retinoic acid) -a 
retinoid used in severe acne due to hyperandrogenism—in the 
treatment of COVID-19(ClinicalTrials.gov; NCT04353180; First 
Posted: April 20, 2020 estimated study start date June 2020) [100-
102].

13 cis retinoic acid could be an effective treatment and COVID-19 
vaccine adjuvant by   inducing mucosal IgA antibodies thus are 
the first line of defense: Since, antibody-dependent enhancement 
(ADE) process could hamper the action of several covid-19 vaccines 
thorough targeting IGA antibodies and vaccine can fail to protect 
against covid-19 infection. ADE is a mechanism based on IgG 
antibodies that COVID-19 uses to penetrate and invade cells.. 
The mechanisms of antibody-dependent enhancement (ADE) are 
different from those in other viruses, such as dengue virus, and are 
more closely related to the presence of different subtypes of virus 
strain, according to previous research on human coronaviruses 
MERS-CoV and SARS-CoV.  Human coronavirus enter cells under 
the support of fragment crystallizable (FcR) receptors. SARS-CoV 
causes enhanced lung injury by inducing hyperimmunity through 
the interactions of FcR and antibody, which alters the functions of 
macrophages (Figure 3) [51]. 

Figure 2: Pathway for COVID-19 infection initiated by androgenic 
hormones activity.

Figure 3: COVID-19 depends on IgG antibodies via ADE process for 
cell invading and entry.  
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Regarding MERS-CoV, this induces viral entry under the induction 
of binding between FcR  and antibodies, which is similar to the 
traditional route of viral entry [103]. In 2007, Yiu Wing Kam et 
al. explored whether antibody against viral spike protein of SARS-
CoV can induce viral invading and   entry into FcR-bearing cells 
and inducing and evoke Antibody-dependent enhancement (ADE) 
[104]. The results demonstrated and showed that by increasing the 
affinity of SARS-CoV towards FcγRII-bearing cells, these antibodies 
cause infection. This increase is mediated by the Fc portion of FcγRII 
on cells and anti-spike antibody, while Angiotensin-converting 
enzyme 2 (ACE2) is not needed or required in the process. Later 
research by Jaume et al. in 2014 showed that antibody against 
SARS-CoV viral spike protein strengthened the infection towards 
lymphocytes and monocytes, both of which do not express SARS-
CoV receptors [105]. This was matching with the results obtained 
by Yiu Wing Kam’s team. In the same year, researches conducted 
by Huang’s team and Chen showed that Antibody-dependent 
enhancement (ADE) is mainly induced by diluted antibodies (Abs) 
against viral spike proteins rather than viral nucleocapsid protein 
[106]. These researches  further showed that anti-spike antibodies 
induce Antibody-dependent enhancement (ADE) during infection 
of  SARS-CoV, and this effect mainly works in cells  of the immune 
system. The rhesus monkey was used as an animal model in 2018 
to study the relationship between the vaccine-induced antibody 
titer and to induce antibody-dependent enhancement (ADE). The 
results showed that those vaccines that elicit low antibodytiters 
cannot induce antibody-dependent enhancement (ADE) after 
infection with SARS-CoV [107]. The highly diluted serum can in 
turn induce SARS-CoV infectivity. In addition, antibody responses 
to SARS-CoV viral spike (S) glycoprotein have been reported to have 
evolved significantly faster anti-Spike neutralizing antibody (NAbs) 
responses in deceased patients compared to recovered patients after 
the onset of clinical symptoms [108]. As World Health Organization 
(WHO) declared that COVID-19 and influenza viruses have a 
similar disease presentation [109]. Consistently, preexisting serum 
antibodies against influenza antigens were found to associate with 
poor outcomes and worse clinical severity in patients during the 
2009 influenza pandemic [110,111]. In this case, we hypothesize 
that therapeutics such as metabolites of vitamin A (retinoic acid) 
that activate and induce IgA antibodies which is the first line of 
defense against viruses  is recommended to be potential treatment 
and  vaccine adjuvant. 

IgA antibodies have no Fc receptor binding sites and may be less 
susceptible to ADE phenomena: Immunoglobulin A(IgA) is the 
first line of defense in the resistance against infection, via inhibiting 
bacterial and viral adhesion to epithelial cells and by neutralisation 
of bacterial toxins and virus, both extra- and intracellularly. In 
addition, Antibody-dependent enhancement (ADE) don't occur 
with antibodies of IgA because they are found in the lining layer 
of lungs and intestine. Unlike IgG serum antibodies, secretory 
IgA may form polymers and has a unique structure which may not 
have the Fc receptor binding sites in some forms as in Figures 4 
and 5. Secreted IgA antibodies plays a crucial and potential role 
in the immune defense of mucosal surfaces, the first point of 
entry of SARS-CoV-2. IgA antibodies-based serology tests targeting 
COVID-19 specific Spike protein and nucleocapsid protein (NP) 
may thus represent an important therapeutic and diagnostic 
approach [112-114].

Retinoic acid is a potent IgA antibodies inducer and isotype 
switching

Vitamin A, given the vital role of its metabolites such as retinoic 
acid in imprinting a gut-homing capacity on B and T cells [115] 
as well as its  effective and potential role in  inducing   the 
differentiation of IgA+ ASCs [116,117]. So, it is not surprising 
that vit A deficiency is associated with decreased and impaired 
intestinal immune responses [118-120]. Consistent with a role for 
vit A in gut IgA antibodies  production, mice  or rats depleted 
of vit A have decreased mucosal antigen-specific IgA antibodies  
responses and levels of total IgA antibodies  in intestinal 
lavages, which correlates with decreased protection against oral 
bacterial toxins and  infections [121,122]. Furthermore, vitamin 
A supplementation prevents the decline in IgA antibodies levels 
showed in malnourished mice [123]. Moreover a direct effect on 
ASCs, it should be considered that deficiency in vitamin A could 
also decrease IgA antibodies production in the gut by decreasing  
the expression of the polymeric receptors of  immunoglobulin, 
leading to a decrease in the production of dimeric IgA antibodies  
to the site  of the gut lumen. Vitamin A  deficient Mice-has 
decreased numbers of IgA+ ASCs in site of  the small bowel lamina 
propria Consequently, mice deficient in the retinoic acid (RA) 
precursor vitamin A lacked IgA antibodies-secreting cells in the 
small intestine [124]. In addition, RA is considered to possess an 
activity of IgA isotype switching [125]. Furthermore, retinoic acid, 
performing as a highly specific IgA isotype switch factor, cooperates 
with transforming growth factor beta 1 (TGF-β1) to enhance the 

Figure 4: IgG antibodies and their Fc receptor binding site.

Figure 5: IgA antibodies and their uniqe dimeric form lacking Fc 
receptor binding site.
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overall IgA response [126]. In addition, retinoic acid enhances 
lactoferrin-induced IgA responses by increasing expression of 
betaglycan [127]. Conversely, supplementation of vitamin A 
correlates with a significant decrease in mortality and diarrhoea 
in HIV-infected patients or malnourished children [128,129]. Also, 
is not surprising that isotretinoin (13 cis retinoic acid) repair the 
function of IgA antibodies in subcorneal pustular dermatosis 
patients  [130]. Concerning that the oral isotretinoin treatment 
can reduce mucosal thickness and lead to nasal and mucus dryness 
and crusting, which may increase the likelihood of contracting the 
disease spread by aerosol particles.

Hypersecretion of mucus in COVID-19: In COVID-19 patients, 
the forming of mucus plugs was found, causing airway obstruction 
and respiratory failure in a large proportion of these patients. 33 
percent of COVID-19 autopsies have detected serious mucoid 
tracheitis [131].

Mucus secretion association with immune response: Although the 
respiratory mucosa functions as a defensive layer against pathogens 
owing to its ability to trap an invading pathogen through sticky 
secretions and then move it out via ciliary action [132]. But 
sungnank et al. confirmed that the nasal epithelial is the source 
of SARS-CoV-2 infection, from there it spreads to the lower 
respiratory tract. Arumugham et al. demonstrated that COVID-19 
overstimulates the mucosa in a pathophysiology similar to dengue 
virus. This contributes to an inflammatory cascade being triggered 
and various inflammatory cytokines and chemokines being 
produced [133]. This is consistent with other studies showing that 
SARS-CoV-2 stimulates the inflammatory response and causes 
increased respiratory mucosal secretion [134].

The role of IL-4 and IL-5 in mucus development and cell 
recruitment mediated by TH2 cells is well defined in an experiment 
by Cohn et al. IL-4 activation of CD4 T cells allows th0 cells to 
be separated from th2 cells, which in turn activates IL-4 secretion 
and maintains a positive feedback loop [135]. By activation of the 
JAK3/STAT 6 pathway, interleukin 4 induces the transcription 
of MUC5AC. STAT 6 is involved in CLCA1 (calcium activated 
chloride channel 1) activation, which stimulates MAPK signalling, 
eventually contributing to the development of mucin. Th2 cells 
aid in attracting lymphocytes and eosinophils into the lungs, 
allowing MUC5AC to be over-secreted in the airway, resulting in 
goblet cell hygiene [136]. On eosinophils and T lymphocytes, Very-
Late-Activation-Antigen-4 (VLA-4) is present, which has the ability 
to bind with Vascular Cell Adhesion Molecule 1 (VCAM-1) and 
allows selective entry of eosinophils into injured tissues [136].

Function of inflammation in hyper secretion of airway mucus: 
The symptoms in COVID-19 and elevated levels of inflammatory 
markers in patients indicate that a severe cytokine storm develops 
in this disease. Recent studies support that mucus hypersecretion 
is caused by inflammation. Studies have shown that most SARS-
CoV-2 contaminated patients have normal WBC counts or 
lymphocytopenia in some cases. There are substantial rises in 
neutrophil levels in patients that show serious conditions. Their 
blood urea and D-dimer levels are both considerably high, while their 
lymphocyte count is decreased [137]. Multiple pro-inflammatory 
cytokines such as IL6, IL10, and TNF-alpha have elevated levels. In 
addition, rises in IL-2, IL-7, and IL-10 were reported in the blood 
tests of patients admitted to intensive care units (ICU) [138,139]. 
The inflammatory response can cause hypersecretion of mucus that 
can block the respiratory tract, reduce airflow and thus aggravate 
the already decreasing function of the lung [140].

In addition, the pro-inflammatory cascades modify mucus 
composition and compromise its clearance by cilia [141]. 
This leads to repeated airway tract infections, causing further 
respiratory tract obstruction, producing a vicious cycle. Patients 
with COVID-19 have higher levels of many pro-inflammatory 
markers, including IL-1, IL-6, IL-2, IL-13 and TNF alpha, along 
with their crosstalk markers [142]. Several other inflammatory 
cytokines are upregulated by the crosstalk of these cytokines and 
their downstream signalling. IL-2, IL-4, and IL-6 control IL-4, 
IL-5, IL-6, and IL-13 levels through STAT5, STAT6, and NFAT, 
respectively. IL-5 also upregulates levels of IL-6, IL-1, and TNF γ 
via STAT1. TNF alpha contributes to upregulation of IL-1beta 
and IL-8 by activation of NF-eterB. Histamine released from mast 
cell degranulation during inflammatory response results in EGF 
and adenosine synthesis via ERk1/2 upregulation in addition to 
cytokines. The inflammation caused by these cytokines may lead to 
hypersecretion of mucus that corresponds to the complication that 
occurs in patients with COVID-19.

Although in our clinical study (ClinicalTrials.gov; NCT04353180) 
we will use isotretinoin treatment for a period of no more than 14 
days, which is considered a very short period and is not sufficient 
to cause any side effects. But based on previous information we 
can take the advantage of  13 cis retinoic acid in modulating both 
nasal clearance and mucus secretion for  inhibiting of COVID-19 
inflammatory complication associated with mucus hyper secretion 
in addition decreasing the chance of  infection transmission 
among peoples via hyper secretions of infected patients  as a study 
investigated the effect of oral isotretinoin on nasal mucociliary 
clearance (A process responsible for mucus secretion into the upper 
airways) and lung function in patients with acne vulgaris  through 
three months of treatment  found that there was no difference 
before and during the third month of treatment in Forced Vital 
Capacity (FVC), forced expiratory volume in 1s (FEV1), FEV1/
FVC ratio, forced expiratory flow rate between 25% and 75% of 
FVC (FEF(25-75), and their predicted percentage ratios. But found 
that nasal clearance was significantly prolonged with treatment, 
and there was significant correlation between drug dose and 
mucociliary clearance time [143].

Isotretinoin caused signs and symptoms of dry nose and disturbed 
mucociliary clearance without affecting pulmonary function tests 
PFTs [143]. When we compared the results of this study with the 
results of a cross-sectional study in which the mean mucociliary 
clearance times of COVID-19 infected patients (15.53 ± 5.57 min) 
was high in comparison with control (9.50 ± 3.70 min) groups, were 
significantly different (Z=4.675, p<0.001) [144-147]. We hypothesize 
that nasal clearance was significantly prolonged with treatment 
because isotretinoin treatment leads to mucus drying and hypo-
secretion in contrast to COVID-19 infection which lead to hyper 
nasal clearance prolongation because of the inflammatory response 
can cause hyper-secretion of mucus that can block the respiratory 
tract, reduce airflow and thus aggravate the already decreasing 
function of the lung [148-161].

CONCLUSION 

Generally the mechanism of isotretinoin in reducing fluid secretion 
like sebum secretion and mucus secretion is owing to its ability 
to inhibit androgen attachment to its receptors as astudy found 
that ARfloxLysMCre males (males  lacking androgen receptor (AR) 
showed significantly less mucus production in ARfloxLysMCre 
males after OVA exposure.  Isotretinoin alone can decrease 
androgen levels via attenuating its effect and attachment to 
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function tests PFTs.
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