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Introduction
The lung is a frequent site of metastasis of breast adenocarcinoma. 

When a solitary pulmonary nodule is detected during the follow-up 
of estrogen receptor (ER)-negative breast cancer patients, series of 
immunohistochemical studies for the lung biopsy are often needed to 
make a differential diagnosis of the lung lesion. Vollmer proposed a 
model based on immunohistocheimcal stains for thyroid transcription 
factor (TTF)-1, mammaglobin, p63, and ER and epidemiologic data 
about primary lung and metastatic breast cancers in women [1]. This 
model can yield nearly certain diagnoses in approximately 80% of 
tumors, but TTF-1-negative lung cancers may not be distinguished 
from ER-negative breast cancer in small biopsy samples [1]. Therefore, 
there is an unmet need for tissue-specific biomarkers that distinguish 
primary lung adenocarcinoma from metastatic ER-negative breast 
cancers in the lung. We undertook a study to identify tissue-specific 
biomarkers to help distinguish between primary lung adenocarcinoma 
and breast cancer metastases in lung. Since fresh frozen tissue of the 
breast cancer metastasis in lung is not readily available for research, 
we chose to compare protein expression profiles between primary ER-
negative breast cancers and primary lung adenocarcinoma, to identify 
tissue-specific biomarkers. This approach has been widely employed 
to develop a genomic predictor of tissue of origin [2], based on the 
assumption that expression profiles are generally similar between 
primary and metastatic lesions [3].

Matrix-assisted laser desorption/ionization mass spectrometry 
(MALDI MS) has been demonstrated to be useful for direct molecular 
profiling of common solid tumors [4]. In this approach, mass spectra 
are obtained from discrete locations on the tissue cryosections, aided 
by sinapinic acid matrix. The resulting spectra are composed primarily 
of singly charged ions of proteins present in the tissue at the locations 

sampled. In our previous study of gastric cancer, protein profiles were 
found to accurately classify tumor from non-tumor tissue [5]. It was 
previously demonstrated that MALDI MS profiles can distinguish 
hepatocellular carcinomas from intrahepatic cholangiocarcinomas 
[6]. Meding et al. [7] also reported that MALDI imaging classified 6 
common tumors (thyroid gland, esophagus, stomach, colon, liver, and 
breast) according to primary tissue origin at the 82.74% accuracy. These 
promising results prompted us to test the feasibility of using direct 
tissue MALDI-MS to classify common solid tumors according to the 
tissue origin of primary tumors. Here we report MALDI MS profiles 
that may distinguish primary lung adenocarcinoma and ER-negative 
breast adenocarcinoma. 

Materials and Methods
Processing clinical material and MALDI MS data acquisition

Tissues were obtained, with informed consent and institutional 
review board approval, from patients undergoing surgery at National 
Cancer Center in Korea and had been frozen in liquid nitrogen until 
the analysis. Samples were prepared for MALDI analysis as described 
previously [4]. Briefly, thin (12 μm) sections were obtained from the 
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tool computed the proportion of the random permutations that gave 
as many peaks significant at the selected level of significance as were 
found by comparing the true class labels. Protein profiles of the classes 
were considered different if this probability (designated as Permutation 
P value) was calculated to be less than 0.05. 

To evaluate whether classes have different protein profiles or not, 
class prediction analyses were performed using all samples as a training 
set. The cross-validation was performed using 0.632+bootstrap cross 
validation method of BRB-ArrayTools [9]. The cross-validated 
misclassification rate was computed for all classifier functions 
(compound covariate predictor (CCP), diagonal linear discriminant 
analysis (LDA), 1- and 3-nearest neighbors (NN), nearest centroid 
(NC), and support vector machine (SVM)) in the training set. Then, class 
labels were randomly shuffled and the cross-validated misclassification 
rate was computed for each random dataset. Permutation P value, 
which is defined as the proportion of random datasets that give as 
small misclassification rate as is obtained with real class labels, was then 
calculated. MALDI MS profiles of the classes were considered different 
if this permutation P value was <0.05. A statistical classification model 
was developed to distinguish primary breast from lung cancers using 
half the samples and validated with the other half. Informative peaks 
identified in the training set were then used to predict the class label of 
a proof-of-concept test sample.

Protein identification

A surgically removed lung adenocarcinoma specimen was used for 
peak identification. Protein was extracted using phosphate-buffered 
saline and hypotonic saline. These extracts were further fractionated 
by high-performance liquid chromatography (HPLC). Aliquots of 
HPLC fractions were analyzed by MALDI time-of -flight (TOF) mass 
spectrometry (MS) using sinapinic acid as matrix on a Voyager-De 
Pro TOF MS instrument (PerSeptive, Framingham, MA). Lyophilized 
aliquots of selected fractions were further fractionated by reverse 
phase HPLC. LC-MS/MS analyses of the HPLC fractions (treated with 
trypsin) were performed, and theoretical masses of intact proteins 
identified in particular fractions were compared with MALDI-TOF MS 
data of these fractions.

Immunohistochemistry

S100A6 immunohistochemistry was performed using anti-
S100A6 (A5115, DAKO, Carpinteria, CA) and commercial tissue 
microarray (TMA) slides (BB6, VA2, MB4, and 201(VI), Superbiochips 
Laboratories, Seoul, Korea; A206V and A202VII, Isu Abxis, Seoul, 
Korea). Immunostaining results could be obtained from 16 breast and 
12 lung adenocarcinomas with Superbiochips. Also, results could be 
obtained from 24 breast and 18 lung adenocarcinomas with Isu Abxis. 
Positive staining for S100A6 was defined as staining unequivocally 
deeper than background. The intensity of immunoreactivity was 
graded on a scale from 0 to 4+. Chi-square test was used to compare 
S100A6 immunostaining grades.

Results
Data acquisition

Ten breast adenocarcinoma and 18 lung adenocarcinoma were 
used as a training set, and a breast cancer lung metastasis was used as 
a proof-of-concept test sample (Table 1S). Mass spectra were acquired 
on individual spots for each tissue section, and these spectra were 
averaged together after pre-processing to create one average spectrum 
per patient in order to minimize intra-sample variability. The average 

frozen tissues with a cryostat (Leica CM 3050S, Leica Microsystems 
Inc., Bannockburn, IL). For each tissue, two serial sections were 
obtained. One section was stained with hematoxylin and eosin (H&E) 
for visual examination. An optical image was acquired with a digital 
microscope slide scanner (Mirax, Budapest, Hungary). The other 
section was thaw-mounted onto a gold-coated stainless steel MALDI 
plate and washed with graded ethanol solutions (70, 90, 95% ethanol 
for 30 sec each) for subsequent mass spectral analysis. The optical 
image of the H&E-stained serial section was evaluated by pathologists, 
who digitally placed 200 μm diameter circles on discrete regions of 
interest on the tissue section. These circles were intended to cover areas 
of the tissue enriched with at least 75% of a particular cell type, i.e., 
normal epithelial cells or tumor cells. The two images (H&E section 
and ethanol-fixed section) were then overlayed in Photoshop (Adobe 
Systems Inc, San Jose, CA) in order to align features of the two serial 
sections. Distinct x,y-coordinates were obtained from each spot and 
imported into a robotic device for automated matrix deposition. 

Matrix was deposited via an acoustic reagent multispotter (Portrait 
630, LabCyte, Sunnyvale, CA) that uses focused acoustic energy to 
eject matrix droplets onto a target.10 Sinapinic acid (20 mg/ml, 50:50 
acetonitrile:water with 0.1% trifluoroacetic acid) was used as the 
MALDI matrix. A total volume of ~9 nl matrix was deposited at each 
discrete location on tissue, resulting in dried crystal spots of ~200 μm 
diameter. 

Mass spectra were acquired using an Autoflex Speed (Bruker 
Daltonics, Billerica, MA) time-of-flight (TOF) mass spectrometer 
equipped with a SmartBeam laser (Nd:YAG, 355 nm) and run using 
a linear-mode acquisition method optimized for 2-20 kDa. Data were 
acquired in an automated fashion from each matrix spot, with a total of 
384 laser shots acquired via random walk over the entire spot for each 
mass spectrum. 

Data processing and statistical analysis

ClinProTools (version 2.2, Bruker Daltonics) was used for baseline 
subtraction, spectral recalibration, and spectral peak area calculation. 
A resolution of 300 was applied to the peak detection method. The Top 
Hat baseline with 10% minimal baseline width was used for baseline 
subtraction. Data reduction was performed at a factor of 4. Spectra 
were recalibrated with a maximal peak shift of 2,000  ppm between 
reference and peak masses. The value of the ‘% Match to Calibrant 
Peaks’ parameter was set to 20%. Spectra that were not recalibratable 
were excluded. All data with signal-to-noise ratios>5 were acquired, 
and peak area was used for peak calculation with zero level integration. 
An average peak list was set up for each tissue sample by picking peaks 
on the calculated total average spectrum for each tissue sample to 
create one average spectrum per patient. 

Average-normalized data was subjected to statistical analysis 
using BRB-ArrayTools (NCI, version 4.1) [8]. A principal component 
analysis (PCA) plot was generated using multi-dimensional scaling 
analysis of BRB-ArrayTools, which graphically represents correlation 
coefficients among samples without forcing the samples into specific 
clusters. The three primary principal components were used as the axes 
for the 3-dimensional scaling representation. Class comparison and 
class prediction analyses were also performed using BRB-ArrayTools 
[8]. The class comparison analysis computed a Student t-test for each 
peak, and listed peaks differentially expressed among the classes at 
selected statistical significance level. Then, 100 random permutations 
of the class labels were performed. For each random permutation, all 
of the t-tests were re-computed for each peak. The class comparison 
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spectra are composed of 4 to 21 individual measurements for breast 
cancer samples (with a median value of 6). The average spectra for 
primary breast and lung cancers are shown in figure 1A. Post-spectral 
processing identified 63 features across the entire mass range for all of 
the samples studied. 

A PCA plot graphically demonstrates that primary breast cancers 
and primary lung cancers are separately clustered in an unsupervised 
analysis (Figure 1B). When a class comparison analysis was performed 
using BRB-ArrayTools, the proportion of the random permutations 
that gave as many significant peaks at a feature selection of P<0.01 as 
were found by comparing the true class labels (breast cancer vs lung 
cancer) was less than 0.023, suggesting that breast and lung cancer 
samples are significantly different in their protein profiles. Class 
prediction analysis was performed using all of 28 samples as a training 
set. The permutation P value for 0.632+bootstrap cross-validation 
misclassification rate was less than 0.05 for the most classifiers 
(including support vector machines, nearest centroid, 1-nearest 
neighbor, and 3-nearest neighbor), suggesting that breast and lung 
cancer samples are significantly different in their protein profiles. 

Next, class prediction analysis was performed after dividing the 
entire set of samples into two groups based upon the chronological 
order of the enrollment. The first half of the samples was used as a 
training set to develop predictors for the tissue origin. When peaks 
differentially expressed between breast and lung cancers in the first half 
at feature selection P<0.01 were applied to samples in the latter half, 
they predicted the class labels with 71-86% accuracy. Although there 
was only one breast cancer metastasis sample available, we sought to 
test the classification power of our MALDI MS profile in this sample 
as a proof of concept. When 4 peaks that were differentially expressed 
between 10 breast and 18 lung primary adenocarcinomas at feature 
selection P<0.01 were used to predict the tissue origin of a proof-of-
concept test sample, it was correctly predicted as a breast primary by 
all classifiers. These results warrant further larger-scaled studies to 
validate the predictive power of the MALDI MS profiles. Table 1 lists 
these 4 peaks that were differentially expressed between primary breast 
and lung adenocarcinomas (Table 1). 

Identification of discriminatory proteins and immunohisto-
chemistry

Discriminatory protein identification was performed using a lung 
adenocarcinoma tissue sample as described in Materials and Methods. 
A peak at m/z 10,093, which was the largest peak that was significantly 
overexpressed in the lung cancer, was identified as S100A6 (Figure 2A). 
The other three peaks could not be identified. 

S100A6, the only one peak identified in the MALDI MS profile, was 
then tested for classification power for the tissue origin using a different 
platform. S100A6 immunostaining was significantly lower in breast 
cancer samples than in lung adenocarcinoma samples, according to 2 
independent tissue microarray studies. Median S100A6 immunostain 
grades were 1+ and 3+ for breast and lung adenocarcinomas, 
respectively, with the Superbiochip tissue microarray analysis 
(P=0.001). Median S100A6 immunostain grades were 1+ and 3+ for 
breast and lung adenocarcinoma, respectively, with the Isu Abxis tissue 
microarray analysis (P=0.023). When all samples were dichotomized 
according to S100A6 immunostaining grade as S100A6-high (2+ or 
above) or as S100A6-low (<2+), the overall sensitivity and specificity of 
the S100A6 for predicting breast cancer were 78% and 83% respectively 
[positive and negative predictive values, 86 and 74%, respectively]. 
Representative immunohistochemical study results are shown in figure 
2B.

Discussion
This work demonstrates that a protein profile obtained from 

frozen resected samples via MALDI MS can differentiate primary 
breast cancers from lung adenocarcinoma samples. While MALDI MS 
profiling studies have been performed for primary breast [10,11] and 
lung cancers [4], respectively, there have been no MALDI MS studies 
that identified differentially expressed peaks between breast and lung 

Figure 1: (A) Overlay of average mass spectra for protein obtained from 
primary breast (shown in red) and lung adenocarcinomas (shown in green). 
(B) A principal component analysis plot for 10 primary breast cancer samples 
(shown in red) and 18 primary lung adenocarcinoma samples (shown in 
green), which graphically represents Euclidean distances among samples. 
Each sphere represents a single sample, and samples whose protein 
expression profiles are very similar are shown clustered together. A breast 
cancer metastasis to the lung (shown in blue) is located close to primary 
breast cancers.

m/z P
Peak area

Ratio1 Assignment
Breast Lung

2,752 0.008 16 26 0.6 　

6,277 0.004 29 48 0.6 　

8,566 0.004 102 189 0.5 　

10,093 0.008 175 353 0.5 S100A6

Ratio1, the peak area ratio of breast to lung cancer

Table 1: Peaks differentially expressed between primary breast and lung 
adenocarcinomas at feature selection P<0.01.
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adenocarcinomas, two common fatal diseases. The distinction between 
a primary lung adenocarcinoma and a metastatic breast cancer is 
critical for determining a treatment plan, but it is not uncommon 
to find a poorly differentiated, solitary lung lesion existing in breast 
cancer patients. We demonstrated the feasibility of using direct tissue 
MALDI MS to classify common solid tumors according to the tissue 
origin of primary tumors, suggesting a possible clinical utility. 

In this study, S100A6 is identified as a biomarker that distinguishes 
primary lung adenocarcinoma and ER-negative breast adenocarcinoma. 
S100A6 expression is increased during the progression of lung 
adenocarcinoma [12], and decreased in breast cancers compared 
with normal mammary epithelium [13]. S100A6 functions as a Ca2+ 
sensor, and is involved in cell cycle regulation, intracellular calcium 
homeostasis and signaling, ion transport, exocytosis of insulin from 
pancreatic cells, cytoskeletal rearrangement, and ubiquitinated 
proteolytic degradation [14]. The functional implication of its relative 
abundance in lung adenocarcinoma is uncertain. While S100A6 was 
initially identified as a MALDI MS peak underexpressed in our ER-
negative breast cancers compared with primary lung adenocarcinoma, 
its immunoreactivity was also found to be lower in ER-positive breast 
cancers than in lung cancers. Importantly, S100A6 expression was 
lower not only in primary breast cancers, but also in a lung metastasis, 
than in primary lung adenocarcinoma. Notably, however, our study is 
limited for the small size of validation set, which is due to the fact that 
metastatic breast cancers are seldom resected in clinical practice.

Acknowledgement

The work was supported by grants from Converging Research Center Program 
(2012K001506), through the Ministry of Education, Science and Technology of 
Korea and Proteogenomic Research Program through the National Research 
Foundation  of Korea funded by the Korean Ministry of Education, Science and 
Technology.

References

1. Vollmer RT (2009) Primary Lung Cancer vs Metastatic Breast Cancer: A 
Probabilistic Approach. Am J Clin Pathol 132: 391-395

2. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, et al. (2008) 
MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26: 462-
469.

3. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000) Molecular 
portraits of human breast tumours. Nature 406: 747-752.

4. Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, et al. (2003) Proteomic 
patterns of tumour subsets in non-small-cell lung cancer. Lancet 362: 433-439.

5. Kim HK, Reyzer ML, Choi IJ, Kim CG, Kim HS, et al. (2010) Gastric cancer-
specific protein profile identified using endoscopic biopsy samples via MALDI 
mass spectrometry. J Proteome Res 9: 4123-4130.

6. Jeon YE, Lee SC, Paik SS, Lee KG, Jin SY, et al. (2011) Histology-directed 
matrix-assisted laser desorption/ionization analysis reveals tissue origin and 
p53 status of primary liver cancers. Pathol Int 61: 449-455.

7. Meding S, Nitsche U, Balluff B, Elsner M, Rauser S, et al. (2012) Tumor 
classification of six common cancer types based on proteomic profiling by 
MALDI imaging. J Proteome Res 11: 1996-2003.

8. Simon R, Lam A, Li MC, Ngan M, Menenzes S, et al. (2007) Analysis of gene 
expression data using BRB-ArrayTools. Cancer Inform 3: 11-17.

9. Sahiner B, Chan HP, Hadjiiski L (2008) Classifier performance prediction for 
computer-aided diagnosis using a limited dataset. Med Phys 35: 1559-1570.

10.	Cornett DS, Mobley JA, Dias EC, Andersson M, Arteaga CL, et al. (2006) A 
novel histology-directed strategy for MALDI-MS tissue profiling that improves 
throughput and cellular specificity in human breast cancer. Mol Cell Proteomics 
5: 1975-1983.

11. Rauser S, Marquardt C, Balluff B, Deininger SO, Albers C, et al. (2010) 
Classification of HER2 receptor status in breast cancer tissues by MALDI 
imaging mass spectrometry. J Proteome Res 9: 1854-1863.

12.	Ishii A, Suzuki M, Satomi K, Kobayashi H, Sakashita S, et al. (2009) Increased 
cytoplasmic S100A6 expression is associated with pulmonary adenocarcinoma 
progression. Pathol Int 59: 623-630.

13.	Sanders ME, Dias EC, Xu BJ, Mobley JA, Billheimer D, et al. (2008) 
Differentiating proteomic biomarkers in breast cancer by laser capture 
microdissection and MALDI MS. J Proteome Res 7: 1500-1507.

14.	Breen EC, Tang K (2003) Calcyclin (S100A6) regulates pulmonary fibroblast 
proliferation, morphology, and cytoskeletal organization in vitro. J Cell Biochem 
88: 848-854.

Figure 2: (A) Intensity profile for an identified discriminatory protein, S100A6, 
among 10 primary breast cancers (shown in green) and 18 primary lung 
adenocarcinomas (shown in red). (B) Representative S100A6 immunostaining 
for primary breast and lung adenocarcinoma samples in commercial tissue 
microarray slides.

This article was originally published in a special issue, Microarray 
Proteomics handled by Editor(s). Dr. Qiangwei Xia, University of Wisconsin-
Madison, USA

http://www.ncbi.nlm.nih.gov/pubmed/19687315
http://www.ncbi.nlm.nih.gov/pubmed/19687315
http://www.ncbi.nlm.nih.gov/pubmed/19687315
http://www.ncbi.nlm.nih.gov/pubmed/18362881
http://www.ncbi.nlm.nih.gov/pubmed/18362881
http://www.ncbi.nlm.nih.gov/pubmed/18362881
http://www.ncbi.nlm.nih.gov/pubmed/18362881
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://www.ncbi.nlm.nih.gov/pubmed/12927430
http://www.ncbi.nlm.nih.gov/pubmed/12927430
http://www.ncbi.nlm.nih.gov/pubmed/12927430
http://www.ncbi.nlm.nih.gov/pubmed/20557134
http://www.ncbi.nlm.nih.gov/pubmed/20557134
http://www.ncbi.nlm.nih.gov/pubmed/20557134
http://www.ncbi.nlm.nih.gov/pubmed/20557134
http://www.ncbi.nlm.nih.gov/pubmed/21790858
http://www.ncbi.nlm.nih.gov/pubmed/21790858
http://www.ncbi.nlm.nih.gov/pubmed/21790858
http://www.ncbi.nlm.nih.gov/pubmed/21790858
http://www.ncbi.nlm.nih.gov/pubmed/22224404
http://www.ncbi.nlm.nih.gov/pubmed/22224404
http://www.ncbi.nlm.nih.gov/pubmed/22224404
http://www.ncbi.nlm.nih.gov/pubmed/22224404
http://www.ncbi.nlm.nih.gov/pubmed/19455231
http://www.ncbi.nlm.nih.gov/pubmed/19455231
http://www.ncbi.nlm.nih.gov/pubmed/19455231
http://www.ncbi.nlm.nih.gov/pubmed/18491550
http://www.ncbi.nlm.nih.gov/pubmed/18491550
http://www.ncbi.nlm.nih.gov/pubmed/18491550
http://www.ncbi.nlm.nih.gov/pubmed/16849436
http://www.ncbi.nlm.nih.gov/pubmed/16849436
http://www.ncbi.nlm.nih.gov/pubmed/16849436
http://www.ncbi.nlm.nih.gov/pubmed/16849436
http://www.ncbi.nlm.nih.gov/pubmed/16849436
http://www.ncbi.nlm.nih.gov/pubmed/20170166
http://www.ncbi.nlm.nih.gov/pubmed/20170166
http://www.ncbi.nlm.nih.gov/pubmed/20170166
http://www.ncbi.nlm.nih.gov/pubmed/19712129
http://www.ncbi.nlm.nih.gov/pubmed/19712129
http://www.ncbi.nlm.nih.gov/pubmed/19712129
http://www.ncbi.nlm.nih.gov/pubmed/19712129
http://www.ncbi.nlm.nih.gov/pubmed/18386930
http://www.ncbi.nlm.nih.gov/pubmed/18386930
http://www.ncbi.nlm.nih.gov/pubmed/18386930
http://www.ncbi.nlm.nih.gov/pubmed/18386930
http://www.ncbi.nlm.nih.gov/pubmed/12577318
http://www.ncbi.nlm.nih.gov/pubmed/12577318
http://www.ncbi.nlm.nih.gov/pubmed/12577318

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Materials and Methods 
	Processing clinical material and MALDI MS data acquisition 
	Data processing and statistical analysis 
	Protein identification 
	Immunohistochemistry 

	Results
	Data acquisition 
	Identification of discriminatory proteins and immunohistochemistry 

	Discussion
	Acknowledgement
	Figure 1
	Figure 2
	Table 1
	References



