Opinion Article

Making Wind and Solar Reliable Power

Chao Zhang*

Department of Electrical and Power Engineering, Shanghai Jiao Tong University, Shanghai, China.

DESCRIPTION

The electricity arena has entered a new phase in which conventional power systems are being challenged by rapidly expanding contributions from renewable energy sources. The hallmark traits of wind and solar generation variable output, location-specific performance and reliance on weather patterns are placing pressure on infrastructure and operational approaches that were built around predictable, dispatchable units. Thus begins the critical work of weaving these new resources into the grid fabric so that they do not stand apart as isolated projects but become dependable assets within a resilient, modern power system. In the current energy standard, the integration of renewable energy sources into existing electricity systems stands as one of the most complex and consequential technical challenges facing the sector. As alternating-current networks were originally designed around large, synchronous generators driving steady flows of power, the arrival of variable renewable generation wind, solar and other non-dispatchable sources has disrupted the assumptions that underpinned decades of grid architecture. Addressing this disruption calls for holistic strategy that join engineering sophistication, operational flexibility and system wide coordination.

At its core, the task of integration revolves around managing three interlinked issues and first, the inherent intermittency and variability of many renewable sources of second, the need for system flexibility to absorb fluctuations in supply and demand and the third would be the imperative to maintain or enhance reliability and power quality under a dramatically different generation mix. These challenges are far from abstract. As research shows, the variability of wind and solar imposes new burdens on forecasting, ramping, storage and control systems. Unlike traditional thermal or hydroelectric units that provide relatively predictable output and store large rotating inertia, many renewable sources fluctuate in output depending on weather, time-of-day and other external factors. This variability

complicates matching supply with demand in real-time. One review highlights that high penetration of such sources forces grids to adopt advanced planning and optimisation techniques just to maintain stability. Given these realities, one cannot treat renewable integration simply as an add-on to the grid. Rather, the system must be re-imagined and forecasting must improve, operations must become more dynamic, storage and flexibility must be embedded and the network must adapt to two-way flows, distributed generation and less synchronous inertia.

The implications for network protection, voltage regulation and load balancing are significant. Without proper integration, the result may be increased curtailment of renewables, asset underutilisation or premature grid stress. Reviewing the literature, one finds that simple deployment of wind and solar without corresponding system adjustments may yield minimal net gains or even operational instability. Beyond the technical challenges, the integration of renewable energy offers considerable value not just in substituting fossil-fuel-based generation but in offering broader system and societal benefits. For example, deployment of variable renewables combined with flexibility mechanisms can reduce reliance on imported energy carriers, diminish environmental impacts and improve public health outcomes through lower emissions. The network must transition from one way flows to dynamic, multi-directional flows and from fixed schedule operations to real-time control. Grid forming inverters, modular storage, micro-grid architectures and modern protection schemes are key enablers. It is also essential to align generation locations with demand centres or to ensure sufficient transmission capacity links the two. Delays here will diminish the value of many renewable installations. Storage technologies, smart demand-side measures and flexible loads must be embedded into system planning. The integration of renewable energy into electricity systems is not merely a technical adjustment it is a systemic transformation. It calls for disciplines to converge and power engineering, control systems, economics, forecasting and operations must interact seamlessly.

Correspondence to: Chao Zhang, Department of Electrical and Power Engineering, Shanghai Jiao Tong University, Shanghai, China, E-mail: zhangch@gmail.com

Received:10-Jun-2025, Manuscript No. JFRA-25-38915; Editor assigned: 12-Jun-2025, PreQC No. JFRA-25-38915(PQ); Reviewed: 25-Jun-2025, QC No. JFRA-25-38915; Revised: 02-Jul-2025, Manuscript No. JFRA-25-38915(R); Published: 09-Jul-2025, DOI: 10.35248/2090-4541-25.15.389

Citation: Zhang C (2025). Making Wind and Solar Reliable Power. J Fundam Renewable Energy Appl. 15:389.

Copyright: © 2025 Zhang C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.