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Editorial
Maintenance of genomic stability is critical for living organisms

because it is crucial for cell survival and development, and it prevents
the development of deleterious mutations. Overriding this control will
cause genomic instability, a hallmark of cancer.

Figure1: Cells with DNA damage such as replication stress,
replication forks are stalled

The genome is highly vulnerable to damage, especially during DNA
replication because chromosome is decondensed and the replication
forks are extremely sensitive to DNA damage agents. The eukaryotic
replisome, which consists of a large number of replication fork-
associated proteins, is essential for the elongation of replication forks
during DNA replication. This complex contains DNA polymerases,
MCM helicase, single stranded DNA (ssDNA) binding protein RPA,
sliding clamp PCNA, Tipin, Timeless, Claspin, And-1, etc. In cells with
DNA damage such as replication stress, replication forks are stalled
Figure 1. At stalled replication forks, some of replisome components
switch their role from facilitating DNA synthesis to inducing activation
of DNA replication checkpoint, a signaling transduction pathway that
is critical to maintain fork stability and triggers cell cycle arrest.

Specifically, DNA lesions induced by replication stress lead to
replication fork stalling, and at stalled replication forks ssDNA and
primer-template junctions are formed [1]. ssDNA is generated when
DNA helicase and DNA polymerase activities become uncoupled from
one another due to either physical obstructions or nucleotide
deficiencies that block DNA polymerase progression [2]. The

replication and checkpoint protein TopBP1 cooperates with the
BACH1/FANCJ helicase to promote loading of RPA onto ssDNA at the
stalled replication forks [3]. The ATR kinase is then recruited to the
stalled replication forks through a specific interaction between RPA
and ATR-interacting proten ATRIP [4]. The ATR is activated by a
mechanism involving Rad9/Hus1/Rad1 (9-1-1) clamp and TopBP1
[5,6]. Ultimately, coordinated actions of several replisome proteins,
including Claspin, Timeless, and Tipin, bring Chk1 to the stalled forks
to be phosphorylated by ATR [7,12].

Timeless and Tipin proteins form heterodimers and interact with
MCM helicase [7,13]. Depletion of either one compromises S phase
checkpoint activation [7,14]. Intriguingly, Timeless-Tipin complex
prevents ssDNA accumulation at unperturbed replication forks and
facilitates activation of ATR-Chk1 pathway in cells experiencing
replication stress [15]. Claspin binds to DNA at the replication origins
and is important for DNA synthesis in unperturbed cells [16].
Importantly, Claspin is a Chk1-interacting protein and Claspin-Chk1
interaction is critical for Chk1 phosphorylation under conditions that
causes replication stress [11]. Timely degradation of Claspin is needed
to release the cells from checkpoint arrest, enabling them to resume
DNA replication [17,18]. In addition, Claspin, Timless and Chk1 are
also known to regulate PCNA ubiquitination to tolerate DNA damage
and avoid catastrophic replication fork collapse [19,20].

Replication checkpoint can prevent synthesis of damaged DNA and
maintain the stability of stalled replication forks. For example, nuclease
Exo1 and helicase SMARCAL1 are inhibited following activation of the
replication checkpoint activation as a way to stabilize replication forks
[21,22]. In cells with replication stress, checkpoint prevents DNA
synthesis by inhibiting late origin firing [23,24]. As a key regulator of
checkpoint activation, ATR has long been established to maintain
replication fork stability and to prevent replication origin firing during
replication stress. Recent study showed that ATR prohibits replication
catastrophe by preventing global exhaustion of RPA [25]. However, it
should be noted that RPA exhaustion in the presence of ATR can still
lead to irreversible breakage of replication forks [25].

Replication proteins play multiple roles in cells. In addition to their
role in DNA synthesis, replisome proteins are essential for DNA
replication checkpoint activation and maintenance of fork stability.
Although it is clear that replisome proteins are critical for replication
checkpoint activation, it remains largely unknown that how replisome
components coordinate with checkpoint proteins during checkpoint
activation. It also remains to be determined how checkpoint pathway
targets replisome proteins to maintain fork stability in cells with
replication stress. Addressing these questions will significantly help us
to understand the role of replication proteins in the regulation of
genomic stability.
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